A Formal Advisor for Eclipse Java Development

Frank Rimlinger
US Dept. of Defense
Fort Meade, MD
Email: frankrimlinger @ gmail.com

Abstract—A “formal advisor” takes source code as input and
produces proof artifacts for an automated theorem-prover as well
as precise, human readable functional documentation. The formal
advisor determines what the theorem-prover should prove and
what useful information can be provided as code documentation.
To be effective, such a system must be highly automated and
integrated with a development environment. The paper describes
an evolving formal advisor for Java code, driven by the JPF
engine embedded within the Eclipse development platform.

I. INTRODUCTION

Java developers will often provide javadoc for some of
the methods of a class. This documentation is usually a brief
summary intended to apprise would be callers of the method
of what inputs are expected and what outputs should result.
If the documentation is good, the developer need not even
review the source code to resolve crucial development issues.
Does the method perform the desired function? Is the input
correctly set up? Are any assumptions about the environment
properly accounted for? Conversely, in the complete absence
of source code and javadoc, the developer must just guess the
intended function, drawing on experience, context, the name
of the method, and any black box testing that time allows.
Inevitably, errors creep in, and so it is natural to ask, how
might this error rate be lowered?

Certainly the error rate would be lowered if all methods
had good documentation in the above sense. The question
then becomes, how to obtain this documentation? As no one
sets out with the idea of writing incorrect code, informally
generated documentation reflects developer intentions, which
may or may not coincide with the function of the code as
written. Observational bias may be defined as the erroneous
identification of intent with function. Fortunately, there are
ways to eliminate observational bias.

For example, consider obfuscating all identifiers in the code.
The obfuscated code still determines the same function, and
can now be read without observational bias. Unfortunately,
obfuscated code is incomprehensible, and so clearly fails the
test for good documentation. But this strategy contains a grain
of truth and can be improved upon. Imagine a formal trans-
formation of the code to an alternative description of function
which is comprehensible, and yet sufficiently different from
the original code that it may be read without observational
bias. A formal advisor generates this description. This paper
proposes a mechanism to drive a formal advisor, and reports
on project Mango, an effort to build this mechanism [11].

II. FORMAL ADVISOR MECHANISM

In this section a series of steps is taken to modify the
control flow diagram representing a computer program. Each
such modification comes with an implied prescription for
enumerating the execution paths through the new diagram.
The net effect of program execution on each input state is
equivalent to that of the original diagram, so that program
function is invariant under these modifications. The point of
this modification process is to break up control flow into a
hierarchy of diagrams. This hierarchy is then analyzed in a
bottom up manner via a uniform process. This method of
analysis was first described in [12].

A. Loop subdivision

Abstractly, a control flow diagram is a finite graph whose
vertices are state transition functions, or less formally, instruc-
tions, together with oriented edges which determine the flow
of execution from one instruction to the next. Each such edge
corresponds to a state predicate, sometimes called a branch
condition, deciding which states may pass from edge source
to edge destination. A sequence of edges then corresponds
to an execution path if the destination of each edge is the
source of the next. Accordingly, a minimal path that begins and
ends at the same instruction corresponds to a loop in program
execution, and a computer program contains a finite number
of loops.

An instruction is a loop entry point if it is the destination of
an edge not in the loop. A loop entry point I may be replaced
by two new instructions, « and €2, such that all edges formerly
leaving I now leave «, and all edges formerly entering I now
enter €2 (see Figures 1 and 2). Observe the paths from « to €2
in the new graph now determine a control flow diagram (see
Figure 3). Let S represent the state transition of this diagram,
and let C accept the states s entering the loop, such that S™(s)
exits the loop for some number n = n(s) which may depend
on s. Formally, define the recursive function

Flo) = {F(S@))

This function F' becomes the state transition for €2, and « is
given the identity state transition. The execution paths through
the new diagram are as before, except that paths arriving at €}
go directly to o and are henceforth constrained never to arrive
at () again (see Figure 4). Overall program execution remains

if n(s) =0,

if n(s) > 0. %

unchanged, but the complexity of the diagram is reduced by
at least one loop.

Repeat this process until no loops remain. Observe that the
benefit of simplifying the graph is evidently offset by the cost
of introducing a hierarchy of recursive functions. However, this
is not inconsistent with the stated goal of producing a different
point of view, one from which we may observe functionality
without observational bias. By analogy with signal analysis,
time and frequency domains both present useful points of view,
but neither is typically simpler than the other. In particular, the
recursive functions generated by this process are suitable for
analysis by automated theorem provers such as ACL2 [9][6].

B. Confluence

A vertex of a graph G is a branch point if it has at least
two outgoing edges and a confluence if it has at least two
incoming edges. The dual graph G, is obtained by reversing
the orientation of all edges of G, so that the branch points of G
are the confluences of G, and G.. = G. Given branch points
b; and by in a graph, say that by flows into bs if there is an
execution path from b; to be which contains no intermediate
branch point. Observe that the branch points of a graph G
themselves form a new graph B(G), such that the source by
of each edge e of B(G) flows into the destination vertex bo
of e, as by and by are viewed from within G.

A graph G is acyclic if it contains no loop. For example, the
ultimate control flow diagram obtained in the previous section
is acyclic. Certainly if G is acyclic, then so are B(G) and
G.. Given a finite acyclic graph G (see Figure 5), evidently
B(G) must contain a sink vertex b (see Figure 6). Define
the forward flow G} of b within G to be the subgraph of G
supporting execution paths from b to sinks of GG. Observe that
G has exactly one branch point, namely b, although it may
have many confluences.

Now repeat this argument, starting with the dual graph Gy,,
arriving at a graph K with at most one branch point and at
most one confluence (see Figure 7). The paths from the branch
point to the confluence are parallel cases. Observe that K, is
now naturally embedded in G, and may be excised, reducing
the number of branch points of G (see Figure 8). Observe that
only the edges of K, in the complement of the forward flow
of the remaining branch points are removed from G.

Just as a loop may be replaced by a recursive function, a set
of parallel cases may be replaced by a single case. This single
case is the unification of the parallel cases. Unification is an
algorithmic process which introduces variables in a generic ex-
pression and then provides a specialization for each particular
case. Replace the parallel cases of K, by a single unified case
and sew the consequent edge back into G (see Figure 9). This
process reduces the number of branch points of GG, allowing the
construction of the functional description to proceed without
exponential growth in the number of execution paths. This is
an absolute requirement for the procedure; however, it does
not come without a cost, as we shall see in the next section.

Begin

l

>
|

&

End

Fig. 1. Control flow with loops

Beqin

|

Q

. .

Gl
,/—‘J'

m
=
[=1%

Fig. 2. Entrypoint I replaced by « and Q2

Da—— Fe+—c -0

Fig. 3. The body of the recursive function F'

C. Loop invariance

Each execution path determines a state transition S and a
constraint C, which is a boolean function of state. Given a
state s, the constraint C' will accept s if and only if each
successive transition of s by a path instruction is accepted
by the corresponding outgoing edge branch condition. More
succinctly, C' decides which states will flow along the given
path from beginning to end. Taken together, S and C form
a specification for the path. Such specifications, suitably
translated into natural language, comprise the model which

Begin

Mo X —c — T +—

Fig. 4. F replaces the loop

Bei;in
"

b C

/
£
:

End

Fig. 5. An acyclic graph G

b/a \c

Fig. 6. The branch graph B(G)

E

|
§
&

d

Fig. 7. K, the reduction to parallel cases

'
AN
Q P
]
L)

Fig. 8. Excision of K reduces complexity

Begin

N
/

unified 'I
e
End

Fig. 9. Branch point reduction of G

the formal advisor exposes to the user as the equivalent but
different description of program function.

Before the matter of translation and exposition can be taken
up, the actual computation of S and C' must be considered.
At this point, design choices must be made which have
profound impact on the architecture and efficiency of the
formal advisor. Specifically, a model of state must be chosen,
together with a model for representation of state transitions and
branch conditions. Taken together, these choices are sometimes
referred to as symbolic simulation. For the purpose of this
section, assume that such a symbolic simulation engine is in
place. The question now becomes, how will this engine deal
with the constructs introduced in the previous sections, namely,
recursive functions and generic state transitions?

Given a recursive function F', it is always good to know for
states s satisfying some input-time constraint C, if F(s) = s.
In this event, C' is said to be F—invariant, or speaking
more loosely, C' is a loop invariant. Efficient computation of
loop invariants is essential for efficient computation of path
specification. Of course, the general question of F'-invariance

of a constraint C' is undecidable, but in practice this is not
an issue. The real question is how to efficiently store and
retrieve the information required to attempt an invariance
detection computation in the first place. The difficulty is
compounded by the presence of generic input state, which
may be present due to unification of parallel cases upstream
of the loop. Observe that brute force loop body simulation of
individual specializations quickly leads to exponential growth
of computational complexity in the presence of deeply nested
loops.

Fortunately, failure to detect a loop invariant does not lead
to unsound results. However, the higher the success rate of
invariant detection, the lower the amount of self-referential
material ultimately exposed to the user by the advisor. For
an example of the ambiguity introduced by self-reference,
ask me what my name is. I could respond "My name is
Frank”, or perhaps "My name is that which identifies me”.
Both responses are correct, but the former is clearly far more
informative than the latter. The successful loop invariance
analyzer must therefore have a high success rate for typical
situations, and be robust enough to abandon computations that
create unacceptable computational load.

The approach taken to invariant detection in Mango is
sound, but also both ad hoc and fragile. This part of the tool
is still evolving and contributions in this area would be most
welcome.

D. Translation

Expressions produced by the symbolic simulation engine
within Mango are based on the state model of the Java
Virtual Machine (JVM) [5]. Such expressions are suitable for
automated processing, but far too complex and repetitive for
human reading. This section discusses how such expressions
can be exhibited and navigated in a human-friendly manner.
See Figure 10 for some an example of the Mango plugin
working within the Eclipse workbench. Please see [11] for
examples of tool output. This site will be updated as the tool
matures and the examples become more interesting.

State is modeled with five variables: H, nH, Stack, Stat,
oldState, for the heap, next free heap address, frame stack,
static area, and previous state, respectively. The Mango Formal
Language (MFL) uses Lisp syntax [13], so, for example, a
generic state looks like

(slist H nH Stack Stat oldState)

State transition is modeled at the byte code level, with unin-
terpreted rule keys modeling JVM semantics. For example

(getFromLocalVar 1 (topFrame Stack))

represents the value of the local variable at offset 1 in the
top frame of the frame stack. Accordingly, the first step in
translation is to map such expressions to the corresponding
local variable names. For example, within the context of the
method

static public foo(int x,int y){...}

the above expression would just become y, greatly improving
readability. Of course, the introduction of context requires a
management layer that handles context switching, but this
theme will be taken up in section III. The next level of
translation involves the conversion of lisp syntax into natural
language. This is accomplished with a rule-based pattern
matching system. For example, (not (= y null)) matches on
the rule “(not (= x null)) — x is defined ” to produce “y is
defined”.

Computation of the specification (S,C) is incremental,
essentially one byte-code per heartbeat. At each heartbeat, an
attempt is made to simplify the set of accumulated branch
conditions via automated reasoning, and to remove any re-
cursive function invocations via loop invariant detection. A
metric is imposed to measure the complexity of the updated
(S, C) expression once all simplification has taken place. If
the expression is too complex, simulation pauses and the user
is alerted. At this point the user may explicitly introduce rules
to reduce complexity. Typically, after a training period, this
issue settles down.

Analysis proceeds bottom up, with the translation process
in lock-step. Specifications for each generic case and each
recursive function body are stored in persistent storage as built,
so that the process handles interruption with minimal loss.
Once all the components of a method have been assembled,
the user may then query the overall specification of that
method. The result is exposed to the user as a folder which
may be opened to reveal OR folders, AND folders, and leaf
expressions. The OR folders correspond to functions of generic
state. If an OR folder is left unopened, the corresponding
function will be rendered using only type reasoning based
on the corresponding generic values. If an OR folder is
opened, then the corresponding function cannot render until
one of folder child items is selected. Each such child item
corresponds to a specialization, and the specialized expression
is then incorporated into the rendering logic. Observe that the
specialization may itself contain zero, one, or more generic
functions, and accordingly is a leaf, OR, or AND folder.
Opening an AND folder has no effect on rendering, but does
allow the user to navigate to the corresponding OR children.

In general, this exposition model exported to the user may
be a Pandora’s Box, in that the user typically must open an
exponentially growing number of folders to observe all cases.
However, for sufficiently well-designed, correct, modular code,
the user should not need to drill down more than one or two
levels to gain confidence that the descriptions obtained do
in fact characterize the intended code function. Conversely,
a failure to do so is generally indicative of some shortcoming
within the code.

ITII. SYSTEM INTEGRATION

The JPF [10] project of NASA/AMES hosts the fundamental
jpf-core [8] project as well as numerous project extensions, one
of which is jpf-mango [11]. The jpf-mango site hosts an earlier
stand-alone project constituting the original port from an even
older C++ project, as well as the current Mango project. The

jpf-core project is used by Mango for two crucial functions.
Parsing the Java .class files, jpf-core drives a notification
based mechanism which can feed byte-codes in execution
order to third party listeners. More generally, jpf-core can
traverse any suitably configured graph, keeping track of branch
points and backing up to them in a highly configureable
manner. Mango uses both the specific service tied to Java for
initial processing and the more general abstraction layer to
traverse its own internally generated graphs.

Mango is intended to provide developers with near real-time
feedback on their code as it is developed. As such, it must
be part of a development platform. For this purpose, Eclipse
[1] is an ideal platform for Mango. Deployed as an Eclipse
plugin, Mango can be freely accessed by Java developers
world-wide. Modern development projects typically consist
of numerous files which the development platform maintains
and exposes to the user in a coherent manner. Under the
hood, Mango has access to all the structure maintained by
Eclipse. This allows Mango to boot-up and organize its own
data structures transparently, so that the user may begin code
specification with just a few mouse-clicks. Mango also takes
advantage of folder-viewer, graph-viewer, editor, view, marker,
and persistent storage functionality supplied by Eclipse to
bring the user an intuitive experience consistent with familiar
Eclipse workflow.

A. Integration with jpf-core

Within the Mango project, the code for integration with jpf-
core is contained within the jpf —mango — bridge source
root. The gov.nasa.jpf package contains a few classes that
handle JPF boot up issues. The bulk of the code is in the mango
package, split between sub-packages scanner and jpfmango.
The scanner package handles the initial parse of targeted
.class files. Within scanner, the bytecode sub-package
contains a class for each byte code. Guided by the specification
for the Java Virtual Machine [5], each such class translates
the byte code semantics into MFL. By this means, the state
transitions S and the branch conditions C' get built on-the-fly
as the scanner runs. In addition, during the scanner run, the
corresponding control flow diagram structure is built.

After scanning is complete, loop subdivision takes place,
creating a hierarchy of blown-up loop components. This
process is managed from class LoopAlgorithm in the
mango.worker.mangoModel package of the Mango.src root.
The jpfmango driver now takes over, with four nested levels
of choice generation [7]. At the top level, the component
dependency graph is walked. Each component G therefore
is an abstract instruction which is executed by creating its
corresponding branch point graph B(G), and passing to the
next level. At this level, the branch point graph is traversed
bottom up, and each branch point b is executed by excising the
forward flow Gy, passing to the dual Gy,, creating the branch
graph B(Gy.), and passing to the next level. Similarly, B(Gp.)
is walked, at each point creating a parallel case graph K and
passing to the next level. At the final level, K, is traversed,
and the mango heartbeat is executed for each maximal linear

path of byte-code instructions. The code for these levels is in
the jpfmango subpackages component, confluence (both
intermediate levels), and caseSplit, respectively.

The single greatest advantage of using the jpf-core to drive
graph traversal is the emergence of a uniform concept of fime.
Regardless of the actual computation, the parcelling of code
into the various listeners that occurs at salient times during
traversal makes the code easier to understand and maintain.

The heartbeat work is controlled from the class FreeChoice
and its extension FreeInvocationChoice. Invocation in-
volves a lot of subtle context switching issues to maintain
correct translation of local variables and specializations. The
simplification, translation, and invariant detection processes
are handled by the same basic pattern matching engine,
referred to as the rewriter. The rewriter builds a substitution
map {variable—value} based on the pattern match of an input
template with an expression. Classically, the substitution map
is applied to an output template to produce the output expres-
sion. The Mango mechanism is generalized so that any action
extending mango.worker.engine.rule.RuleAction may ac-
cept the substitution map and produce customized output. In
sophisticated cases such code recursively invokes the rewriter.
By this means, conditional rewriting, translation, and simple
reasoning systems are layered on top of the rewriter. These
activities are mediated by a MangoThreadsOwner in the
mango package of the src root, which exposes Pause and
Cancel buttons to the user.

When paused, the user may inspect various kinds of data,
and add new rules to the rule base. The current jpf-mango
[11] project may be pulled from the mercurial repository to
develop new actions. The user and/or Mango developer may
exercise the rewriter via a sandbox MangoThreadsQOwner for
the purpose of trying out new rules or actions or just generally
trying to understand how expressions simplify. If the sandbox
is active while specification generation is paused, then the user
has access to the current constraint C' accumulating along the
path under specification.

The introduction of new rules and actions is strictly on the
honor system. Aside from syntax checking and limited sanity
testing, Mango has no ability to enforce its own soundness.
Therefore it is always a good idea to perform lots of regression
testing after altering the rule base or the code base. Currently
there is no systematic way to do this, but this feature is
definitely high on the list of things to do.

B. Integration with Eclipse

The controller for all the above activities is class
SelectTargetMsg, in the mango.worker.msg package under
the Mango.src root. This message is fired from the Eclipse
gui, specifically the “Mango>Run” command within the Java
editor window context pop-up menu of the user selected
method. But before the run command may fire, the method
population must be generated. Population generation is fired
by the “Mango>Populate” command, also targeting the se-
lected method. At this point, Eclipse internals are queried
to determine what user project this method is in. Mango

takes the point of view that only source code in the user
project need be specified. All other code dependencies are
considered to be native, and must be either previously specified
or provided with native specification. Eclipse internals are then
used to generate all the source and native dependencies of the
targeted method. This is the method population, which might
be enormous. For this reason, computation of the method
population is broken out as a separate command, so that the
user may cancel and restart with a less dependent method if
necessary.

Upon completion, the “Mango>Populate” command ex-
poses the rule base and the existing set of specifications as
folders in the “Mango Explorer” folder viewer (see Figure
10), analogous to the “Package Explorer” familiar to Eclipse
Java developers. The user may navigate to a rule, for example,
and pull it up in an editor window by double-clicking. All the
familiar commands for editing, creating, copying, destroying,
and moving rules about in the rule base are implemented.
MFL expressions, such as those used within the rule pattern,
substitution, and hypothesis fields, may be pasted into an
“Expression Editor”. Each such editor comes with its own
“Rewrite” command, together with “Pause” and “Cancel”
buttons which are wired to the sandbox MangoThreadsOwner.

As specification proceeds, markers appear in the gutter of
the source code editor of the targeted method to indicate
specification progress. For example, in Figure 10, the red dot
to the left of the for loop indicates the specification for the
corresponding loop body has built. Clicking on such a marker
creates a folder in the “Mango Explorer” for specification
query. In Figure 10, this folder is represented by the green
icon. The user may then inspect the specification further by
opening this folder to reveal AND/OR children representing
particular specializations. This representation is discussed in
IL.D above. A command may be fired at any time to render the
current folder configuration as a specialized specification. The
example of Figure 10 has no specializations, so just clicking
on the green icon yields the complete specification as shown.

In addition to the specification level “Pause” and “Can-
cel” buttons, the “Mango Explorer” tool bar also exposes
commands for “Reset” and “Synchronization”. In general,
the rewriter uses a hashing mechanism to efficiently store
expressions. The base class for this mechanism is Hash, in
the mango.worker.engine.hash package of the Mango.src
root. As the jpfmango mechanism backs up and generates
new choices, so a family tree of hash tables is generated. Each
expression knows its place in this family tree, and therefore
whether or not it is stale at any given point in time. Stale
expressions no longer have any interpretation in the current
Mango model, and are removed from the “Mango Explorer”
view by the “Reset” command. This eliminates clutter as the
specification process posts a lot of time-sensitive data to assist
rule-making and Mango development.

Necessarily, native specifications are editable, but in general
specifications are read only. However, the user may use
the “Package Explorer” to delete existing specifications for
regression testing. The “Synchronization” command will cause

the “Mango Explorer” to completely rebuild itself to reflect
the new state of the file system. This is just a stop-gap as
Eclipse itself provides a comprehensive mechanism for auto-
synchronization. For example, currently changes in the source
code of specified methods do not invalidate corresponding
Mango specifications, but this is something an Eclipse user
would expect to happen automatically.

C. Integration with ACL2

Mango automatically generates conjectures about loop ter-
mination by asserting the truth of loop exit conditions eval-
uated on recursive function output. In order to prove these
conjectures, loop body state transitions are translated into
recursive function definitions which may be admitted into
the ACL2 theorem prover logic. In addition to recursive
functions, supporting definitions and other dependencies are
also supplied. These output text files are suitable for processing
by ACL2s [2], which is an Eclipse plugin supporting all ACL2
functionality within the Eclipse workbench setting.

The pipeline to ACL2s has been implemented in the acl2
package in the Mango.src root. Robert Bellarmine Krug of
University of Texas at Austin has helped with this modeling
effort and accomplished complex termination proofs within
ACL2 proper. However, this whole subject is in its infancy
and lots of work remains. In particular, the issue of guessing
induction metrics for loop termination needs to be addressed.
For example, David Greve of Rockwell Collins has a paper
[4] that might be a good starting point for this effort. Less
sophisticated methods to just pattern match on typical situa-
tions and guess appropriate termination hypothesis are already
in the pipeline.

The TrailManager class in package mango.jpfmango
.component of the jpf — mango — bridge source root pro-
vides basic support for these efforts, identifying the good and
bad exits from a loop. The idea is to prove that a good exit
is attained, assuming the denial of the path constraint for the
bad exits. The FreeChoice class notes the arrival at a bad
exit, so that specification along the path can be cancelled, but
currently no further action is taken. As a good loop exit edge
is traversed, the corresponding branch condition composes
with the loop function and so forms the loop termination
conjecture. Much work remains to automatically generate
suitable hypotheses for such conjectures, but the user does
have the option of manually adding conjectures via shadow
rules, which are rules that only take effect within the forward
flow of a particular instruction in a particular specification
environment.

IV. WORK IN PROGRESS

Currently, native methods must be specified by generating
the requisite MFL expression by hand. This is far to labor-
intensive. Automatic specification of native methods using
opaque values is in the works. The heart of Mango currently
beats several times per second, which is approaching near real-
time. Planned improvements in the parametrization mechanism
as well as in the invariant factorization data pipeline are

expected to further improve performance. Rudimentary auto-
generation of loop termination hypotheses is on the drawing
board.

Mango currently uses several sets of examples for
road-testing. These are contained in the MangoHome and
MangoSystem projects supplied by the plugin itself, also
available for download from the top Mango wiki page [11].
Weaknesses in the tool are readily exposed by testing, but
robust solutions often require several generations of design
and testing to evolve. Once the tool becomes usable, it seems
likely programmers would be willing to give it a try, lured
by the promise of a human readable functional description.
If a substantial user base does develop, then it will become
possible to objectively measure whether or not the tool actually
contributes to a reduction in programming errors.

V. RELATED WORK

The work of Max Ernst et. al. [3] on the Daikon system
is particularly relevant for the future development of Mango.
Once a candidate for invariance has been proposed, Mango
can check invariance via symbolic simulation. Mango can
store information required for checking in persistent form and
utilize known loop invariants for simplification of downstream
expressions. However, the current logic within Mango for
actually finding invariants is weak. Rather than reinvent the
wheel, it would appear to be a really good idea to just integrate
the Daikon functionality for detection of likely invariants
within Mango.

ACKNOWLEDGMENT

The author would like to thank Peter Mehlitz for general
advice and for technical support on all JPF matters, in partic-
ular for advice on how to write the MangoThreads package,
and Robert Bellarmine Krug at University of Texas, Austin,
who developed the ACL2 model for Mango. Many thanks to
those who helped bring Mango into the public domain, as well
as all those who worked on the precursor to Mango.

REFERENCES

[1] Eric Clayberg, Dan Rubel, Eclipse Plug-ins, Third Edition Addison-
Wesley, January 2009

[2] Peter Dillinger, Harsh Raju Chamarthi, ACL2s, The ACL2 Sedan for
Eclipse, http://acl2s.ccs.neu.edu/acl2s/doc/

[3] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, Chen Xiao The Daikon system for
dynamic detection of likely invariants MIT Computer Science and Artifi-
cial Intelligence Lab, 32 Vassar Street, Cambridge, MA 02139, USA http:
/Iwww.cs.washington.edu/homes/mernst/pubs/daikon-tool-scp2007.pdf

[4] David Greve, Assuming Termination ACL2 Workshop Proceedings, 2009
http://www.cs.utexas.edu/~sandip/acl2-09/final/22/22.pdf

[5] Tim Lindholm, Frank Yellin, The Java Virtual Machine Specification, Sec-
ond Edition Addison-Wesley 1999 http://java.sun.com/docs/books/jvms/
second\ _edition/html/VMSpecTOC.doc.html

[6] Hanbing Liu, JVM models in ACL2, http://www.cs.utexas.edu/users/hbl/
talk/TVM-models-in- ACL2.ppt

[7] Peter Mehlitz, Choice Generators http://babelfish.arc.nasa.gov/trac/jpf/
wiki/devel/choicegenerator

[8] Peter Mehlitz, jpf-core, Basis for all JPF projects, http://babelfish.arc.
nasa.gov/trac/jpf/wiki/projects/jpf-core

[9] T Strother Moor, Matt Kaufmann, ACL2 theorem prover, www.cs.utexas.
edu/users/moore/acl2

[l Mango Explorer 52

B[R i[X0[8][F5]
P = Mango Home
F%Method Population

Tr.. modules.baseline. ltsAWrap.clear({[l)V.loops.#12_iload_1 <Alpha>

[7] wsawrapjava 2

static void clear{int[] x3{
(] for{int i=0;i<18;++1){
x[1]=0;
1

' Specification ' #12_iload_1<Alpha> &3
baseline ltsAWrap.clear{[V.lcops.#12_iload_l<Alpha=

[+ input assumptions

1 1s gregter than or equal to @

i is less than length of the Array x
op® 1s less than 18

x 1s defined

[+ output state

[+ heap

[+ <localVar> at unresolved location
x[i] = @

[~ stack

localVar: frameDepth=8, offset=1 = 1 + 1
op@ = 1 + 1

[~ static area

Fig. 10. Sample Mango output within Eclipse platform

[10] NASA/Ames open-source JPF project, The Swiss Army Knife of
Java(TM) verification, http://babelfish.arc.nasa.gov/trac/jpf

[11] Frank Rimlinger, jpf-mango, Specification and Proof Artifact Gener-
ation, http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jptf-mango (wiki)
http://babelfish.arc.nasa.gov/hg/jpf/jpf-mango (mercurial repository)

[12] Frank Rimlinger, Method of converting computer program with loops to
one without loops US Patent 7,788,659 B1, August 31, 2010

[13] Guy L. Steele, Common Lisp, the Language Thinking Machines, Inc.
Digital Press 1990 http://www.cs.cmu.edu/Groups/Al/html/cltl/cltl2.html

