Guided Test Visualization: Making Sense of Errors
in Concurrent Programs

Saint Wesonga and Eric G Mercer
Brigham Young University
swesonga@byu.net and eric.mercer @byu.edu

Abstract—This paper describes a tool to help debug error
traces found by the Java Pathfinder model checker in concurrent
Java programs. It does this by abstracting out thread interactions
and program locations that are not obviously pertinent to the
error through control flow or data dependence. The tool then
iteratively refines the abstraction by adding thread interactions
at critical locations until the error is reachable. The tool visualizes
the entire process and enables the user to systematically analyze
each abstraction and execution. Such an approach explicitly
identifies specific context switch locations and thread interactions
needed to debug a concurrent error trace in small to moderate
programs that can be managed by the Java Pathfinder Tool.

Index Terms—Model checking, concurrency, debug, test

I. INTRODUCTION

Program performance is no longer resolved with next gen-
eration hardware that increases clock frequency as vendors
are now building processors with more cores instead of
faster system clocks. As a result, running time can only be
improved through better algorithms and more concurrency.
Unfortunately, when using concurrency, tools for test or debug
are not readily available, making it difficult for a programmer
to write correct code. The purpose of the tool in this paper is
to test concurrent programs with guided model checking and
then debug error traces through visualization of the guidance
strategy.

Guided JPF (G-JPF) is a search strategy in the Java
Pathfinder (JPF) model checker that finds errors in programs
through iterative refinement over an abstraction on the original
program [1], [2]. Even though model checking and formal
verification are usually precise and sound, they do not scale
to large programs [1], [3], [4], [5]. G-JPF therefore turns
to heuristic guidance strategies to better scale. The G-JPF
abstraction is like a statically computed backward slice starting
at program locations that represent errors. These locations are
either supplied by the developer (e.g. a statement throwing
an exception) or obtained from lint checking tools that flag
possible issues in a program. The abstraction is used to guide
the concrete execution in JPFE. If the program locations in the
abstraction cannot be reached in the concrete execution, the
abstraction is iteratively refined by adding thread interactions
at key program locations until an error trace is generated or the
resources are exhausted (time and memory). Empirical results
show that G-JPF is able to scale to larger programs that contain
errors and can generally produce error traces with minimal
thread interactions [6].

Neha Rungta
NASA Ames Research Center
neha.s.rungta@nasa.gov

The tool described in this paper is a post-mortem visualiza-
tion engine attached to the G-JPF algorithm. The visualization
starts with minimal information in the program slice, and in
each refinement, it distinguishes the added thread interactions
until the error is reached. The visualization includes portions
of the program heap, operand stacks, the underlying program
slice used by the algorithm, correlation between the source
code and the byte code, filters to control included program
locations, and the ability to incrementally visualize the initial
abstraction to the final error trace.

This tool is applicable in cases where concurrent code is be-
ing written, either when developing new concurrent libraries,
or when using prepackaged libraries. A developer creating a
concurrent container, for example, would test her container
using G-JPF with symbolic execution to model input and
use the tool described in this paper to debug any generated
error trace. The value of the tool is in explaining the error
with a minimal set of thread interactions over critical program
locations.

We believe the visualization facilitates debugging an error
trace involving concurrency by making clear the needed thread
interactions on specific program data. The critical interactions
typically involve a small subset of the total number of program
locations, available threads, and possible execution sched-
ules. In other words, the visualization improves debugging
concurrency errors by finding and showing an error trace
involving the least number of threads, context switches, and
program locations. A complete and in-depth discussion of
the G-JPF underlying algorithm can be found in [2]. The
visualization presents to the user the input and output of the
G-JPF algorithm and also the information generated in the
intermediate steps of the G-JPF algorithm.

II. RELATED WORK

A large body of work has been dedicated to the verification
of concurrent programs. We present a discussion of the tools
directly relevant to Guided JPF. CalFuzzer is a tool for race-
directed random testing of concurrent programs that uses the
output of imprecise dynamic analysis tools and randomly
drives threads to the input locations [7]. However, the com-
parision in [8] shows that guiding the search through relevant
key locations is significantly better than randomly directing
the search to the target locations. Dynamic analysis tools
such as ConTest use heuristics to randomly add perturbations

[JPF] [SPF]
,,,,,,,,,,,,,,,, L
Refine program slices
Data dependence analysis Rank thread schedules
| def(a) | | def(a) to, t1,..., ty
Target i ,
Locagons | lo / Iy to,/ tif ...ty
L] : -
‘
ly Rank input data values
Control
dependence 1£(asym)
analysis
Iy True False

Fig. 1. Overview of Guided JPF

in the thread schedules [9] while Chess systematically ex-
plores thread schedules in C'# programs and supports iterative
context bounding [3]. The Guided algorithm, however, has
potential to scale to error discovery in even larger programs.

Haveland discusses integrating runtime analysis and model
checking in [10]. Although similar in some respects, the
Guided algorithm is different because it uses statically com-
puted backward slices to guide its model checking process and
therefore does not need an initial complete run of the program.

III. GUIDED TEST OVERVIEW

G-JPF is part of the JPF verification tool-set [11]. JPF is the
explicit-state model checker that analyzes Java bytecode with
state storage and backtracking capabilities, different search
strategies, as well as listeners for monitoring and influencing
the search. JPF executes Java bytecode based on the standard
Java semantics.

In order to visualize the series of events that lead to the
error discovery in G-JPF, different pieces of information are
recorded during the G-JPF process. This information is then
visualized as a post-processing step. Note that the discussion
of G-JPF has been simplified here. A more complete and in-
depth discussion of the underlying algorithm can be found
in [2]. A intuitive overview of G-JPF is shown in Fig. 1.

A. Input

The input to the G-JPF is a set of target locations that
represents a possible error in the program being verified.
Target locations are either generated from static analysis
tools, assertions, or user-specified reachability properties. The
lockset analysis in static analysis tools, for example, reports
program locations where lock acquisitions by unique threads
may lead to a deadlock [12]; the lock acquisition locations are
the input target locations to G-JPF. The output of imprecise
but scalable static analysis tools such as Jlint, FindBugs, and
Chord is ideal to be used as input to G-JPF. In Fig. 1(a), the
target location is the program statement marked ERROR. The
goal of G-JPF is to find a concrete execution that leads to the
program location marked ERROR.

B. Initial Program Slicing

G-JPF uses program slicing techniques to generate the set of
program locations that may affect the reachability of the target
locations. Intuitively, the goal of these program locations is to
serve as guide posts to the possible error. Standard control
and data dependence analyses are implemented within G-JPF
to generate the backward slices from the target locations. The
backward slices contain (1) branch statements whose target
outcome affects the reachability of the target location (2)
program locations that define global variables that are used
in branch statements and affect the reachability of the target
locations (3) program locations for synchronization where
acquiring or releasing locks affect the reachability of the target
locations. The program locations that are part of the backward
slice are termed as key program locations that determine the
reachability of the target locations.

An example of the initial backward slice is shown
in Fig. 1(a). The reachability of the location ERROR
in Fig. 1(a) needs to satisfy the conditions in either abstract
trace (i) z > 10 == true Ay > 10 == false or abstract
trace (i) x > 10 == false A z > 10 == true. The G-JPF
systematically analyzes each trace in the abstract system in
an attempt to find the error along a corresponding concrete
execution path. The information from analyzing each trace in
the backward slice is recorded in a separate directory to be
displayed by the visualization tool. For the example shown
in Fig. 1(a) G-JPF will first explore trace (i) and then explore
trace (ii) if an error was not found in trace (i). The G-JPF
visualization tool does not present the abstract system to the
user since it is a graph with many potential paths to the error.
Rather the visualization presents the information generated by
G-JPF when analyzing a single trace in the initial backward
slice that eventually leads to an error trace. The visualization
is a postmortem analysis.

C. Search Strategy

G-JPF implements a greedy depth-first search that picks the
best immediate successor of the current state and does not
consider unexplored successors until it reaches the end of the
path. For the example shown in Fig. 1(b), the execution is
guided along the trace 1 — x > 10 == false — z > 10 ==
true — ERROR in the program slice.

A recording listener within G-JPF records and marks in-
formation when the program location of the most recently
executed thread in a state matches the program location in
the abstract trace of key program locations. The listener
stores information about the thread identifier that matched
a particular location in the abstract trace. In addition to the
matching locations in the abstract trace, the listener also saves
other conditional branch statements and data access program
statements. In essence the concrete execution path that matches
the longest sub-sequence of program locations in the abstract
trace is saved by the recording listener. The information stored
by the recording listener is used later in the visualization.

The visualized concrete execution correlates to the initial
abstract trace, but it includes any executed intermediary byte-

code not included in the initial abstract trace. In other words,
the abstract trace includes key byte-codes (source lines) needed
to reach the error, and the concrete trace includes every byte-
code executed along the path. In addition the visualization also
includes values in the heap and the operand stacks. A user is
able to traverse the trace, watching the operand stack and heap
mutate, up to the point where G-JPF is no longer able to follow
the trace due to a unexpected value on a branch condition. The
user can switch between a linear trace view such as what is in
Fig. 1(b) or the a source code view that gives the completed
context of each line of code. Linear trace views and source
line views include both the Java source and the associated
byte-codes for each source line from the class file. Knobs in
the visualization allow a user to jump quickly from locations
only in the abstraction, only in the concrete execution, in both
the abstraction or concrete execution, or those locations not
executed at all. The user is able to see precisely whey G-JPF
cannot continue execution along the path, and it sets the stage
to understand the next step of the algorithm.

D. Guidance Strategies

G-JPF provides a two-level ranking mechanism. In the first
level ranking, the states are assigned a rank based on the num-
ber of locations in the abstract trace of key program locations
that have been encountered along the current execution path.
A listener is used to track the locations explored along a path.
For the second level of ranking, a configurable heuristic is used
to rank states to guide the search toward the next location in
the abstract trace.

JPF provides the ability to systematically handle thread
scheduling choices. JPF generates a scheduling choice for
each enabled thread in the VM state. Distance heuristics are
effective in ranking thread non-determinism when guiding the
execution toward specific locations in the program. Distance
heuristic functions estimate the minimal number of transitions
required to reach a specified location. The estimate is com-
puted on the control flow representation of the program [13],
[8]. For each enabled thread in a VM state the distance
estimate from the current program location is computed. The
successor state with the lowest estimate is explored before
others.

E. Refinement Program Slices

If execution in G-JPF is unable to reach the desired target
of a conditional branch statement containing a global vari-
able, then additional inter-thread dependence information is
added to the program slice. Suppose, the concrete execution
in Fig. 1(b) cannot reach the successor state of where z > 10
is true because the current value of z is not greater than
10. The refinement process shown in Fig. 1(c) adds another
definition of z, by a different concurrently enabled thread, to
the trace. The additional program location states that another
thread needs to set the value of z before the original thread can
continue execution along the original trace. Each refinement
incrementally adds thread interactions in an attempt to find the
error.

Refinement creates a new abstract trace for G-JPF to follow.
G-JPF visualization presents to the user the new refined
trace, and it marks by color the new locations added to the
trace different from the original abstract trace. If multiple
refinements take place, then each refinement adds a new color
to the trace. The view of the refined abstract trace quickly
focuses the user to context switches on shared variables that
affect the reachability of a error location.

As before, G-JPF tries to follow the new refined abstract
trace to produce a new concrete execution; G-JPF visualization
presents to the user the concrete execution. If it is again unable
to reach the target error location, the refinement process is
repeated. G-JPF itself systematically analyzes different traces
through the initial abstraction of the program until it is able
to find an error or exhaust resources (time or memory). The
visualization is postmortem, so it only presents to the user
the evolution of a trace that leads to an actual error. Such an
trace evolution, we believe, aids in debugging as the user can
start with an initial minimal set of thread interactions that is
easy to conceptualize, and then one by one, add other thread
interactions until the error is reachable. With each thread
interaction added to the trace, the user is able to incrementally
internalize her mental model of the system to debug the root
cause of the error.

IV. VISUALIZING GUIDED TEST

We use the program shown in Fig. 2 to demonstrate how
the tool visualizes the process of understanding the cause of
concurrency errors. This is the reorder program from the SIR
example set (http://sir.unl.edu/portal/index.php). It comprises
two Thread subclasses: CheckThread and SetThread
as well as a SetCheck class. A main driver class (ex-
cluded for brevity) is parameterized to indicate the number
of SetThread and CheckThread instances to create. For
simplicity in presentation, we create a single instance of each
thread type. The two thread types share a global variable sc
that is an instance of SetCheck.

The visualization tool has two primary presentation modes:
A source view that displays a program’s Java source code
interspersed with its corresponding bytecode as shown in
Fig. 3, and a linear trace view that displays a sequence of
locations in program order, for example the listings shown in
Fig. 4. Fig. 3 is a static view of the program whereas Fig. 4 is
a dynamic view of the program’s execution. The combination
of the source code with the program bytecode in source view
can enable the developer to better understand the co-relation
between a source code line and its corresponding bytecodes.
This co-relation is helpful in the overall understanding of
concurrency errors because context switching happens at the
byte-code level and not the Java source level, and therefore you
need to consider byte-code to fully understand a concurrent
trace.

The input to the G-JPF is a set of target locations
that represents possible error locations such as assertions
or exceptions. In Fig. 2, the target location is the throw

public class SetCheck {
private int a=0;
private int b=0;

void set() {a=1;b=—-1}
boolean check () {return ((a==0 && b==0) || (a==1 && b==—1));}

public class CheckThread extends Thread {
SetCheck sc;

public CheckThread (SetCheck sc) {this.sc=sc;}
public void run() {
boolean rst = sc.check():
if (rst != true)
throw new RuntimeException(‘‘bug found’’);

public class SetThread extends Thread {
SetCheck sc;

public SetThread (SetCheck sc) {this.sc=sc;}
public void run() {sc.set():}

}

Fig. 2. A listing program that creates 2 threads CheckThread and
SetThread which share an object SetCheck where the shared object
throws an exception on certain schedules of the two threads.

boolean check() {
return ((a==0 && b==0) |
0 (this)

(a==1 && b==-1));

e 00034 (iconst_0)

(iconst_0)

(ireturn)

An example of how listings are displayed in the tool.

Fig. 3.

new RuntimeException () statement on line 8 of the
CheckThread class.

Note that the SetCheck.check () method returns false
(causing the exception to be thrown) if there is an error as
determined by the variables a and b. The occurrence of the
error in this example is dependent on how the Set and Check
threads are scheduled. The goal of G-JPF is to find a concrete
execution that leads to that error location, and the goal of
the visualization is to aid a developer in understanding the
conditions that make the target error location reachable.

The visualization tool does not present the entire abstract
system to the user since it is a graph with many potential paths
to the error. Rather the visualization presents the information
generated by G-JPF when analyzing a single trace in the
initial backward slice that eventually leads to an error trace.
An example of such an abstract trace is shown in Fig. 4(a),
exactly as it is displayed in the visualization tool. Notice,
that the target location in the trace is at bytecode position
00019. The difference between Fig. 4(a) and Fig. 4(b) is
that Fig. 4(a) is a listing of the locations (in an abstract trace)

boolean rst=sc.check();

00000 aload_0 (this)
00004 invokevirtual reorder.SetCheck.check: ()2

return ((a==0 && b==0) |l (a==1 && b==-1));
00000 aload_0 (this)
00004 ifne 00014 (aload_0) [Expected Branch: T]
00019 if_icmpne 00034 (iconst_0) [Expected Branch: F]
00027 if_icmpne 00034 (iconst_0) [Expected Branch: T]
00034 iconst_0

boolean rst=sc.check();
00007 istore_1 (rst)

if (rst!= true)
00010 if_icmpeq 00023 (return) [Expected Branch: F]

throw new RuntimeException ("bug found");
00019 invokespecial java.lang.RuntimeException
(a)
00000 invokevirtual reorder.CheckThread.run()V
boolean rst=sc.check();

00000 aload_0 (this)
00001 getfield sc
00004 invokevirtual reorder.SetCheck.check: ()Z
return ((a==0 && b==0) || (a==1 && b==-1));
00000 aload_0 (this)
00001 getfield a
00004 ifne : false 00014 (aload_0) [Expected Branch: T]
00019 if_icmpne 00034 (iconst_0) [Expected Branch: F]
00027 if_icmpne 00034 (iconst_0) [Expected Branch: T]
00034 iconst_0
boolean rst=sc.check();
00007 istore_1 (rst)
if (rst!= true)
00010 if_icmpeq 00023 (return) [Expected Branch: F]

throw new RuntimeException ("bug found");
00019 invokespecial java.lang.RuntimeException

(b)

Fig. 4. A simplified abstraction as shown in the tool with an attempt to
follow the abstraction in the concrete execution. (a) The initial abstraction of
the program in Fig. 2. (b) A concrete execution trying to follow the abstraction
but getting stuck at the branch.

that are important in determining the reachability of the target
location. As an abstract trace, the locations it includes may be
executed by different threads in the concrete execution of the
program. It is not necessarily a list of locations to be executed
by one thread. The only requirement is that each location
listed in Fig. 4 must be executed by some thread. Fig. 4(b)
on the other hand shows an initial attempt at executing the
program. All executed instructions are grouped together and
all the unreached instructions (from the portion of the abstract
trace in Fig. 4(a) that was not reached) are put into the last
group.

The visualization annotates every conditional branch with
the value of the branch evaluation required to proceed through
the entire trace. The first conditional statement in this abstract
trace is the ifne'! bytecode at position 00004. The search
for a path to the target location will only succeed if the
condition evaluates to true (T) as indicated on that line. When
viewing such a trace, it may not be obvious which variables
are being examined (because the Java bytecode computing
model is stack-based). However, one button click switches
to the source view of the check method shown in Fig. 3
and the conditional branches in Fig. 4 can be easily seen in
the context of their containing method (since source view is
more intuitive for many developers). It is then apparent which
variables they operate on as well as which path through the
code their branches suggest.

Branch execution if the topmost stack operand is not equal to zero.

boolean rst=sc.check();

00000 aload_0 (this)
00004 invokevirtual reorder.SetCheck.check: ()2
return ((a==0 && b==0) |l (a==1 && b==-1));
00000 aload_0 (this)
a=1;
00002 putfield a
return ((a==0 && b==0) || (a==1 && b==-1));
00004 ifne 00014 (aload_0) [Exp ed Branch: T]
00019 if _icmpne 00034 (iconst_0) [Expected Branch: F]
00027 if_icmpne 00034 (iconst_0) [Expected Branch: T]
00034 iconst_0
boolean rst=sc.check();
00007 istore_1 (rst)
if (rst!= true)
00010 if_icmpeq 00023 (return) [Expected Branch: F]

throw new RuntimeException ("bug found");
00019 invokespecial java.lang.RuntimeException.

(a)

00000 invokevirtual reorder.CheckThread.run()V
boolean rst=sc.check();

00000 aload_0 (this)

00001 getfield sc

00004 invokevirtual reorder.SetCheck.check: ()2
return ((a==0 && b==0) || (a==1 && b==-1));

00000 aload_0 (this)

00001 getfield a

sc.set ();
(aload_0 (this)

getfield sc

invokevirtual reorder.SetCheck.set: ()V

aload_0

ico

(this)
1

putfield

a

(this)

b

return ((a==0 && b==0) |l (a==1 && b==-1));
00004 ifne 00014 (aload_0)
00014 aload_0 (this)
00015 getfield a
00018 iconst_1
00019 if_icmpne 00034 (iconst_0)
00022 aload_0 (this)
00023 getfield b
00026 iconst_ml
00027 if_icmpne 00034 (iconst_0)
00034 iconst_0
00035 ireturn
boolean rst=sc.check();
00007 istore_1 (rst)
if (rst!= true)
00008 iload_1 (rst)
00009 iconst_1
00010 if_icmpeqg 00023 (return)

throw new RuntimeException ("bug found");

00013 new java/lang/RuntimeException
00016 dup
00017 ldc "bug found"
00019 invokespecial java.lang.RuntimeException.
(b)
Fig. 5. A refined abstract as shown in the tool with a successful attempt to

follow the abstraction in the concrete execution. (a) The refined abstraction
of the program in Fig. 2. (b) A concrete execution that follows the abstraction
and reaches the error location.

G-JPF implements a greedy depth-first search to pick the
best immediate successor of the current state. For the example
in Fig. 2, G-JPF executes the Reorder program trying to
match the trace listed in Fig. 4(a). The resultant concrete
execution trace is shown in Fig. 4(b). The initialization and
thread creation portion of the concrete trace is omitted for
brevity, and the user can control that in the visualization as
well.

In any view, instructions that have not been executed in the
concrete system are shown with a thread id of -1 because

all executing threads are assigned non-negative thread ids.
The other instructions that have been executed in the concrete
system are grouped based on the thread that executed them.
In Fig. 4(b), for example, all the instructions with locations in
the range 00000 - 00004 have been executed by one thread.
These thread groupings are shown in different colors to allow
the user to easily differentiate groups of instructions belonging
to a particular thread as well as context switch locations.

The tool enables the user to select any location in the trace
to obtain additional details which are displayed in a “Node
Information™” tab as shown in Fig. 6(a). For the ifne in
Fig. 4(b), we can see from the “Node Information” table that
it was executed by the thread with ID 2. We can also quickly
see the instruction’s class and method (reorder.SetCheck
and check) without switching to source view.

The visualization tool provides filters that allow jumping
to certain key locations in the trace such as the first location
matching a key location in the abstract trace in Fig. 4(a). In
order to determine where execution stopped in a potentially
long trace, the user can view the concrete trace listing and
set the step through filter to stop only at “Concrete Only”
instructions. A “Go to Last Instruction” toolbar button would
then highlight the last instruction in the concrete execution.

The ifne instruction at 00004 in Fig. 4(b) has a cor-
responding entry in the abstract system in Fig. 4(a) mark-
ing the expected branch outcome as T(true). The branch
condition, however, evaluated to false as shown on line
00004 in Fig. 4(b). The previous instruction in Fig. 4(b) is
getfield a that loads the value of the shared variable a.
The tool has a “Program Heap” tab shown in Fig. 6(b) that
displays the values of the variables in the heap. At the ifne
instruction we can see in the “Program Heap” tab that the
value of a is 0 and the branch “a is not equal to zero” is
false.

The visualization enables us to detect that the value of the
variable a must not be zero in order for the concrete execution
to match the abstract trace. Refinement creates a new abstract
trace for G-JPF to follow by adding additional inter-thread
dependence information.

The visualization presents to the user the new refined trace.
If multiple refinements take place, then each refinement adds
a new instruction to the trace. The new instruction is usually
shown in a different color to make it stand out to the user.
The view of the refined abstract trace quickly focuses the
user to context switches on shared variables that affect the
reachability of an error location. This focus is critical to the
user because it becomes immediately obvious which slight
scheduling difference can introduce a bug. The refinement
in Fig. 5(a) introduces an extra write to the variable a into
the trace. The different coloring makes it obvious that the
putfield a instruction has been added to the abstraction.

As before, G-JPF tries to follow the new refined abstract
trace to produce a new concrete execution. It systematically
analyzes different traces through the initial abstraction of the
program until it is able to find an error or exhaust resources
(time or memory). As shown in Fig. 5(b), the target location

il | 00004 ifne 00014 (aload 0)

g Value

J|Class [reorder.SetCheck 0o01g (iconst 0)

|Method [check —

:|[Bytecode ine: false

|Bytecode Position |4 [Program Heap | Thread Locations | Operand Stack for Method

:|[Source Line 35 :

‘|source Code return ((a==0 8& b==0) || (3==1 && b==1)); \Variable Name Type Value

I[Source Path CiUsers\swesonga\jpfijpf-guidediestisrclexamplesireorder 3 0

‘I[Class Path CiUsers\swesonga\jpfjpf-guided-testibuildiexamplesireorder b 0

|Executed true !Check 1

:||Thread 1D 2 iSet

§|I_nstruc1i0n Type syncpoint 5C reorder.SetCheck@14d

(a) (b)

00007 tfield b

00019 if icmpne 00034 (iconst 0) R

00022 aload 0 (this) return ((a==0 && b==0} || {a==1 && b==-1));

... 00004 ifne 00014 (aload 0}

[ProgramHeap [Thread Locations | Operand StackforMethod | @ — —w—————0°—»@66# @ ————

Stack Offset Value Program Heap | Thread Locations r Operand Stack for Method

0000 1

0004 1 _ Thread ID Source Line Byte Line
L ||Thread 0 |MiA executenative JPF_java_lang_"
[[Thread1 | b=-1; putfield
[1{Thread 2 | return ({a==0 && b==0) || (a==1 && b==-1)); |getfield

(©) (d)

Fig. 6. Different views presented by the tool. (a) Node detail for a byte-code. (b) State variables in the program heap. (c) The operand stack. (d) The current

location of each thread.

(the exception) is reached using the refined abstract trace.
Consequently, there are no unexplored locations in this final
trace - each location has the non-negative thread id of the last
thread to execute it.

It is noteworthy that the bug in this program can be fixed
by using the synchronized modifieir on the set () and
check () methods in the SetCheck class shown in Fig. 2.

In the new concrete trace in Fig. 5(b), there are instructions
(such as the assignments of 1 and -1 to a and b) that
are executed by a different thread before the thread at the
ifne at location 00004 in Fig. 4(b) resumes. This new
thread executed the putfield a instruction added in the
refinement in Fig. 5(a). As a result of this thread interaction,
the ifne instruction is able to take its expected branch. The
visualization also has thread filters that let the user jump to
instructions executed by specific threads.

The tool provides a visual aid to see the values on the
operand stack as bytecodes are executed. The if_icmpne?
bytecode at offset 00027 in Fig. 5(a) expects the true branch
to be taken. In the concrete trace in Fig. 5(b), the developer
can inspect the actual values that cause the branch condition
to match the expected value. With that instruction selected, the
“Operand Stack for Method” tab shows what is on the stack
when it is executed as shown in Fig. 6(c). The operands used
by the selected instruction are highlighted in order to clarify
to the developer the effects of the instruction on the stack.

Since the most important events in the search for an error
are context switches, it is useful to know where each thread is
at any point in the trace. A “Thread Locations” tab shows the
current position of each thread as shown in Fig. 6(d). It shows

Zbranch if topmost two stack operands are not equal

the concrete trace in Fig. 5(b), when thread 1 is executing
the put field instruction. It is then apparent that thread 2
is parked at a getfield instruction since putfield is
updating a variable to aid in the reachability of the target
location.

The tool also features playback controls that can be set
to automatically step through a trace at a configurable rate
making it easy to see the progression and evolution of the
trace through the different source lines.

V. IMPLEMENTATION DETAILS

As mentioned earlier, the G-JPF algorithm is discussed
extensively in [2]. In order to enable capturing G-JPF ’s traces
for visualization, two additional run configuration options are
supported. A track_output flag turns on capturing of trace
information and a traceset_output_loc configuration
option determines where trace files will be saved. Like all other
configuration options, these can be used in a .jpf configuration
file, or in an Eclipse run configuration.

A. G-JPF Search Listener

A listener is implemented that performs various tasks
of the G-JPF algorithm. The listener is a subclass of the
JPF PropertyListenerAdapter class. The listener can
monitor and track various JPF-search and JPF-VM related
events. For example, it can monitor state advanced, state
backtracked, instruction executed and many other events. The
primary objective of G-JPF is to find a concrete execution
that matches a given abstract trace. To faciliate accomplishing
this goal, the listener tracks all program instructions exe-
cuted along a path generated by a greedy depth-first search.
The searchStarted method in G-JPF’s listener, part of

public void searchStarted (Search search) {

abstractTraceLocs = ((GuidedDFSearch)search). 4
getMetaHeuristicInstance ().
getTraceSet (). getAllLocations ()3 6
visitedAbstractTraceLocs = new ArrayList<KeyLocation >(); 8
oldState = Integer .MAX_VALUE; 10
TrackOutputInstructionVisitor.initializeOnSearchStarted ():
} 12

Fig. 7. Retrieving the initial set of abstract trace locations.

20

which is shown in Fig. 7 handles this. It gets the set of N
abstract trace locations using the main G-JPF algorithm class *
(GuidedDFSearch) on line 4 then creates a new list to track .
these locations on line 8. *

The instructionExecuted notification is generated30
after every bytecode instruction of the system under test is ex-
ecuted by the JVM. The G-JPF listener monitors this event as
shown in the instructionExecuted method outlined in
Fig. 8. In order to determine which thread is currently execut-
ing, it starts with a call to the JVM.getCurrentThread ()
method. It then tracks the class, method, and byte-code
position of the most recently executed (and therefore of
every) instruction executed in a non-matched state. A non- 7
matched state is one in which back-tracking is not nec-
essary and this is determined by the call on line 4 to
the SystemState () .isIgnored() method. The most
recently executed instruction executed is determined with
a call to the JVM’s getLastInstruction () method.
Each Instruction object has a reference to its contain-
ing method’s MethodInfo object (each method in JPF is
represented by a MethodInfo object).

To determine the class and method names as well as the
argument type names, the corresponding methods are invoked
on the MethodInfo object on lines 8-10. The information
about the different instructions executed is stored in a static
data structure (TrackLocations) as shown on line 18. If
the last instruction executed is a conditional branch statement,
it saves the branch condition value of the instruction—t rue
or false. It also saves a reference to the instruction in the
ProgramLocation object that was added to the tracker.
This is done on lines 21-26. Conditional branch instructions
and their actual outcomes (true or false) are integral to
the operation of the algorithm. By saving a reference to the
actual instruction we can query and analyze the runtime state
to determine whether the branch outcome at the conditional
statement matches the expected branch outcome specified in
the abstract trace. In the case that the branch outcome of
the conditional branch in the concrete trace does not match
the one in the abstract trace, the tracked instruction provides
information about the point in the executed program where
the search cannot proceed.

The final task in the instructionExecuted method
of the listener is to invoke a specialized visitor class
to determine the appropriate information to record for
specific instructions. The visitor used for this is the

w

v

©

public void instructionExecuted (JVM vm) {
ThreadInfo currentThread = vm.getCurrentThread ();

if (!vm.getSystemState ().islgnored ()) {
Instruction lastInstrunction = vm.getLastInstruction ();
MethodInfo mi = lastInstrunction.getMethodInfo ();

String className = mi.getClassName ();
String [] argsTypes = mi.getArgumentTypeNames ();
String method = mi.getName ():

Jfor(int arglndex = 0:; arglndex < argsTypes.length; arglndex++) {
method += argsTypes[arglndex];

Integer position = lastInstrunction.getPosition ();
ProgramLocation pl = mew ProgramLocation (className ,
TrackLocations.addLocation (pl);

method, position);

if (lastInstrunction instanceof Iflnstruction) {
Boolean condVal = ((IfInstruction)lastInstrunction)
.getConditionValue ();
TrackLocations.addBranchCondition(pl, condVal);

// Save the Iflnstruction in the program location
pl.setInstruction (lastInstrunction);

. Invoke the instruction tracker (TrackOutputlnstructionVisitor)

Fig. 8. An outline of the listener’s instructionExecuted method.

public void executelnstruction (JVM vm) {
Instruction nextInstr = vm. getNextInstruction ();

ThreadInfo ct = vm. getCurrentThread ():
lastInstructionOperandStack = Utils.getOperandStack(ct);

ExecutelnstructionVisitor.vm = vm;
nextInstr.accept(executelnstructionVisitor);

Fig. 9. Capturing the operand stack before each instruction executes.

TrackOutputInstructionVisitor class.

The trace visualization tool is a post-processing tech-
nique that runs after the search completes. All the infor-
mation required for the visualization has to be recorded
during the search. One such piece of information is the
values on the operand stack before each instruction is ex-
ecuted. The executeInstruction method is used to
record this information. Like the instructionExecuted
method, the executeInstruction method is also part
of the VMListener interface implemented by our listener
in Fig. 9. The notification for the executeInstruction
event is triggered before JPF executes an instruction. The
executelInstruction event is triggered before the exe-
cution of an instruction while the instructionExecuted
event is triggered after the execution of an instruction notifi-
cation. The instruction to be executed is refered to as the next
instruction. The call to JVM.getNextInstruction ()
provides the next instruction to be executed by JPF whereas
the actual operand stack for the current thread is returned on
line 5 by a utility class. Like the instructionExecuted
method, the visitor pattern is used to invoke the different
methods in the ExecuteInstructionVisitor class as
shown on lines 7-8 of Fig. 9.

Getting the actual operand stack before an instruction
executes is done using the getOperandStack () method
shown in Fig. 10. The method accepts a ThreadInfo object

public static List<Integer> getOperandStack (ThreadInfo ti) {
List<Integer> rv = new ArrayList<Integer >();

StackFrame topFrame = ti.getTopFrame ();

int topPosition = topFrame.getTopPos ():
stackBase = topFrame. getLocalVariableCount ();

size = topPosition — stackBase + 1;

int
int

Sor (int i=0; i < size; i++) {
rv.add(ti.peek(i)):

}

return tv;

Fig. 10. A listing of the Utils.getOperandStack method.

representing the thread whose operand stack is to be retrieved.
First, the thread’s top StackFrame is retrieved by a call to
ThreadInfo.getTopFrame (). The JPF StackFrame
object has an integer array of slots (which is combined storage
for locals and operands).

The top index of the operand stack (which points to the
last pushed value) and the stack base (the index where the
operand stack begins in the array of slots) are then computed
on lines 5-6 and used to determine the operand stack size on
line 7. This is done so that the appropriate number of calls to
the thread object’s peek method can be made. Hence we can
record the list of the operands on the top stack frame.

This information is then passed to an
ExecutelInstructionVisitor object as mentioned
earlier. The class uses visitor methods for the GETFIELD,
PUTFIELD, GETSTATIC, PUTSTATIC field instructions
and records their operands’ names and types to facilitate
the visualization later. Fig. 11 shows how these details are
retrieved. Each of these four JPF Instructions is an
instance of JPF’s FieldInstruction class, which has a
getFieldInfo () method for retrieving its FieldInfo
object. The FieldInfo class stores the type, name and
attribute information of a field. It exposes getType () and
getName () methods to retrieve the field’s type and name
respectively. The actual value of the field is determined

using the FieldInfo object’s getValueObject ()
method. The ExecutelInstructionVisitor’s
getValueObject (...) method called on line 9

retrieves the name and type of the field (lines 15-16).
These bits of information are then stored in the listener’s
valueObjectInfo field (line 9).

Whenever a state advances in the search, the locations
in the static data structure TrackLocations, along with
the thread identifier of the most recently executed thread are
written to file and the information in the TrackLocations
is cleared. A state advanced notification indicates a point
in the execution where a new observable state is generated.
Several program instructions can be executed between a par-
ent and successor state (state transition). Note that all the
instructions executed along a state transition will be for the
same thread identifier. Any context switch between threads
generates a new state in JPF. For the output tracking/trace
generation functionality, the last advanced state and the last

public void visit (GETSTATIC ins) {

ThreadInfo ti = vm.getCurrentThread ();
if (ti.isFirstSteplnsn ())

return ;
FieldInfo fi = ins.getFieldInfo ();

StaticElementInfo ei = fi.getClassInfo (). getStaticElementInfo ():
Object valueObj = fi.getValueObject(ei.getFields ());
valueObjectInfo = getValueObjectInfo (fi, valueObj);

}

protected ValueObjectinfo getValueObjectInfo(FieldInfo fi,
ValueObjectInfo voi = mew ValueObjectInfo ();
voi.object = valueObj;
voi.type = fi.getType();
voi.name = fi.getName():

Object valueObj) {

return Voi;

Fig. 11. Capturing a field’s name, type and value.

public void stateProcessed(Search search) {
if (MetaHeuristic.getRefinementValue ()) {
// Since refinement was needed,
// which execution got stuck
Instruction ins = MetaHeuristic.getLastRefinementInstruction ();
ins.accept(trackOutputlnstVisitor);

also track the Iflnstruction at

}
}

Fig. 12. Capturing the instruction at which G-JPF got stuck.

thread id to execute in that state are saved as well to en-
able retrieval of state information when G-JPF completes.
This is achieved by implementing the SearchListener
interface’s stateAdvanced method and calling the JVM’s
getStateId() and getCurrentThread () methods.

At refinement points in the G-JPF, we need to record
which conditional branch outcome did not allow the G-
JPF algorithm to generate a concrete trace that matches the
abstract trace. The stateProcessed notification is used to
handle this condition. In this case, the last Instruction
at which a refinement was needed is retrieved and passed
to the TrackOutputInstructionVisitor as illustrated
by the listing in Fig. 12. The MetaHeuristic class is
responsible for performing refinement, hence the calls to its
refinement methods on lines 2 and 5.

When the error is finally found, the visualization also needs
to track the final state in which the error occurs. For such
scenarios, JPF’s SearchListener interface provides the
propertyViolated method, our implementation of which
is listed in Fig. 13. It determines the last state advanced
to using the G-JPF listener’s getLastAdvancedState ()
method (line 2) and then saves the corresponding last thread
to execute in that state (line 5). Finally, it marks that state
as valid for the TrackOutputInstructionVisitor to
ensure that it is displayed in the output. This is because the
tracker tracks instructions in all states since the relevant ones
will not be known until the error is discovered.

Since the G-JPF algorithm may get stuck while trying to
guide concrete execution along locations in an abstract trace,
it is useful to include in the concrete trace file the locations
in the abstract trace that were not executed. This greatly
simplifies trace analysis in the visualization tool. We extended
the TrackOutputInstructionVisitor visitor class to

public void propertyViolated (Search search) {
int vmstateid = getLastAdvancedState ();
TrackOutputlnstructionVisitor.updateStateNodeMappings (vmstateid);
stateToThreadMap . put (vmstateid , getLastAdvancedThreadld ());

// Mark the state as valid to ensure it is displayed in the output

TrackOutputInstructionVisitor.addValidState (vmstateid);

Fig. 13. Capturing the instruction at which G-JPF got stuck.

// ins — The instruction being examined
// className , methodName — The instruction’s corresponding class and method names

ArrayList<KeyLocation> keylocations = GuidedListener.getAbstractTraceLocations ();

for (int i=0; i < keylocations.size ():
KeyLocation kl = keylocations.get(i);

i++) {

if (kl.getClassName ().equals(className) &&
kl.getMethodName (). equals (methodName) &&
kl.getPosition () == ins.getPosition ())

{
// Mark the location as visited in the guided listener
GuidedListener.addVisitedAbstractTraceLocation (kl);

traceType = OutputNodeAttributes . TRACE_TYPE_CONCRETE_AND_ABSTRACT;

break ;

Fig. 14.
search.

Detecting and marking abstract trace locations visited during the

mark the abstract trace locations that did correspond to pro-
gram locations in the concrete trace. Fig. 14 shows a code
snippet illustrating how to detect and mark the abstract trace
locations that have corresponding locations in the concrete
trace generated during the search. The loop iterates over all
the KeyLocations in the abstract trace and checks whether
the current instruction matches any of them. If so, it marks
that location as visited on line 14.

B. Instruction Listener

The TrackOutputInstructionVisitor class is
used to track every instruction as it executes. It extends the ab-
stract InstructionVisitorAdapter class and records
all the necessary information about each instruction. One of
the tasks performed by the tracker is to load a bytecode’s
corresponding source line (if available) to simplify the task
of viewing a linear trace file. This eliminates having to load
the source files in order to make the connection between
bytecode and source code. This is a straightforward process
since the Instruction.getLineNumber () method re-
turns the line number in the source file, which is then retrieved
and stored.

The thread specific program counters are also stored by
the TrackOutputInstructionVisitor class. This is
because the visualization presents information about the lo-
cation of all threads when an instruction executed for a
given thread. Fig. 15 details how the thread locations are
determined. The ThreadLocationInfo object contains
the thread id, bytecode position and source line numbers while
also providing a custom toString () method to generate the
corresponding XML output for the trace file. Therefore, each
thread id will have an associated ThreadLocationInfo

1

HashMap<Integer , Map<Integer , List<OutputNodeAttributes>>> stateToThreadXmIMap ;

Fig. 16. Declaration of the data structure used to track states, threads, and
instructions.

object. The hash map created on line 2 of Fig. 15 serves to
store this information.

The JVM provides a get ThreadList () method (which
is called on line 3) to retrieve the list of all threads in the JVM.
For each of the ThreadInfo objects returned, the getPC ()
method is called on line 11 to get the next Instruction
to be executed by that thread. For a EXECUTENATIVE
JPF instruction, a call to instr.toString () is made
on line 21 to include the actual method name executed
by the instruction. Also, JPF uses an artificial RUNSTART
instruction at the beginning of every thread. It serves as a
special marker in JPF of the beginning of a new thread
execution but does not cause any changes in program state.
Therefore, if any thread’s first instruction is RUNSTART, line
24 uses the MethodInfo.getInstructionAt (0) call
to get the first actual instruction to be executed by that thread
in order to dump the appropriate mnemonic into the trace file.
The instruction mnemonic can then be determined using the
straightforward instr.getMnemonic () call like on lines
25 and 27.

The visualization uses information recorded from the JPF
state. The tracking class maintains a map from state id
to thread information. This thread information is in turn a
mapping from thread id to a list of instructions executed
by that thread. In order to facilitate the generation of trace
files, a OutputNodeAttributes class is used to store
all the relevant information about each instruction. This class
provides a toString () method that can be called when
the trace file is being generated, and it outputs all the thread
data such as thread id, instruction executing, and so on, all in
the correct format. The structure used by the tracking class is
therefore declared as shown in Fig. 16.

C. Trace Output Generation

When any JPF search is complete, the searchFinished
methods of all registered listeners are called. It is in this
method that the G-JPF algorithm’s listener generates trace
files. Fig. 17 shows how this is implemented. It performs
a couple of tasks. First, it determines whether refinement
was done by G-JPF(line 6). If so, it then determines which
state the refinement was needed in (line 7). It then retrieves
the mapping of state to thread-instruction map from the
TrackOutputInstructionVisitor on line 9. Next, it
iterates through the states and for each state, ensures that it
is relevant to the trace (line 14), determines the last thread
to execute in that state (line 22) and uses that thread id to
retrieve the list of instructions tracked for that thread by the
TrackOutputInstructionVisitor object (line 24).

Since both relevant and irrelevant states (in terms of finding
the error) are stored by the instruction tracker, the invalid states

20

22

24

26

28

30

32

34

36

38

40

private HashMap<Integer ,
HashMap<Integer , ThreadLocationInfo> threadLocInfo = nmew HashMap<Integer ,
ThreadList threads = ti.getVM(). getThreadList();

Iterator<ThreadInfo> it = threads.iterator ();

while (it.hasNext()) {
ThreadInfo threadInfo = it.next();
ThreadLocationInfo tinfo = nmew ThreadLocationInfo ();
tinfo.tid = threadInfo.getIndex ();

Instruction instr = threadInfo.getPC():
if (instr == null) {
tinfo .bytecodeLineNumber = —1;
tinfo .sourcecodeLineNumber = —1I;
} else {

String mnemonic;

if (instr instanceof EXECUTENATIVE) {
// Use the toString method to include the name of the actual
// method this instruction executes.
mnemonic = instr.toString ();
} else if (instr instanceof RUNSTART) {
// Fetch the first actual instruction
instr = instr.getMethodInfo (). getInstructionAt (0);
mnemonic = instr.getMnemonic ();
} else {

mnemonic = instr.getMnemonic ();

int sourceLineNum = instr.getLineNumber ():

tinfo .sourcecodeLineNumber = sourceLineNum;
tinfo.bytecodeLineNumber = instr.getPosition ():
tinfo .bytecodeMnemonic = mnemonic;
tinfo.instruction = instr;

tinfo.sourceLine = (sourceLineNum == —1) ? "N/A” :

}

threadLocInfo . put(threadInfo.getIndex ().
}

return threadLocInfo;

tinfo);

i

ThreadLocationInfo> getThreadLocationInfo(ThreadInfo ti) {
ThreadLocationInfo >();

getSourceCode (instr);

Fig. 15.

are ignored except for the case where a refinement was done.
Each instruction is stored in an OutputNodeAttributes
object as previously discussed. The trace output generation
process ends by outputting the paths referred to in the traces
and writing the trace out to disk.

D. Trace File Format

The output generated by the Guided test algorithm is saved
in trace files in a customized XML format. Everything in the
XML file is stored in a graph tag (the document root). There
are three primary tags for holding trace content. The first is
the jpfstate tag. It represents a JPF state and therefore
its attributes store all the state metadata needed in the trace
file. Currently, only the state id is stored as an attribute of the
jpfstate tag. The only tag that a jpfstate can contain
is the node tag, which is used to store all the metadata for
the instructions executed in that state. There is one node tag
for each instruction that was executed.

We record information about the location of all the threads,
as well as information about the executed instructions, pro-
gram heap, and operand stack at the time each instruction was
executed. The node tag can contain threads, variables,
and operandstack tags to store these bits of information
respectively. The Threads tag encapsulates the state of all the
threads when a given instruction was executed and is therefore
a container for any number of thread tags. The thread
tags in turn detail the thread id, bytecode program counter,
corresponding source line position, the actual bytecode and
source code, and the class and method of the instruction at
that thread’s program counter. The state of the variables (name,
type, and value) in the program is stored in the variable

Generating thread locations.

tag. The operandstack tag has a values attribute which
is a comma delimitted list of the operands required by the
instruction under which the tag is placed in the trace. The
DTD lists these specifications as well as all required attributes
for all the tags. It is therefore a useful debugging aid as well
since it is used for validating the trace files to ensure that they
are in the exact format described.

E. Shell Integration

The trace visualization tool used to aid in viewing and
analyzing the G-JPF algorithm’s traces is a Java Swing appli-
cation. It can therefore be be run as a “standalone” application
as shown in Fig. 18. However, the guided test model checker
can also be launched using the JPF shell. The main idea
behind the JPF-shell project is to provide a framework for
developing domain specific GUIs for JPF tools. Therefore, the
visualization tool is also integrated into the JPF shell as shown
in Fig. 19. The key advantage of using it as part of the JPF
shell is that the trace output location is already known to the
tool and the visualization can therefore be done immediately
after verifying a program from the exact same interface. For
developers that primarily use the shell, this is a significant
usability aid, especially since changing output locations does
not affect the process of visualizing the generated traces. When
the tool is launched as a stand alone application, the traces
have to be manually loaded from wherever they are saved.

It is worth noting that the integration of the visualization
tool into the JPF shell is a rather straightforward process. In
order to extend the functionality of the JPF shell, there are
two primary tasks to be performed. First, a custom class that
extends the default JPF shell class (BasicShell) is created

21

23

25

27

29

31

33

35

37

39

41

43

public void searchFinished(Search search) {
if (this.trackOutput == false) return;

startXmlOutput ();
boolean didRefine = MetaHeuristic.getRefinementValue ():
int refinementState =

Iterator<Integer> it =
while (it.hasNext()) {
int vmstate = it.next():

if (!TrackOutputlnstructionVisitor.isValidState (vmstate)) {
if (!didRefine || vmstate != refinementState)
continue;

}
openStateXml (vmstate)

Map<Integer ,
Integer validThreadld = stateToThreadMap.get(vmstate);
List<OutputNodeAttributes> nodes = map.get(validThreadld);

if (vmstate != refinementState) {
if (nodes != null) {
for (int k = 0; k < nodes.size (); k++) {
OutputNodeAttributes attr = nodes.get(k);
xmlOutput += attr.toString ():

}
}
} else {

xmlOutput += nodes.get(0).toString ();

closeStateXml ();

}

endXmlOutput ():
outputXml(getCurrentTraceld () + 7
searchesRun++;

.xml™);

didRefine ? TrackOutputlnstructionVisitor.computeRefinementState () :

Integer .MIN_VALUE;

TrackOutputInstructionVisitor.stateToThreadXmlMap.keySet (). iterator ();

List<OutputNodeAttributes>> map = TrackOutputInstructionVisitor.stateToThreadXmIMap . get(vmstate);

Fig. 17.

in order to override any of the behavior or properties of the
BasicShell. Next, a ShellPanel providing the desired
user interface and functionality is created.

For our tool, the default BasicShell provides sufficient
functionality and does not need to be extended. Since the shell
functionality is provided through ShellPanel objects, the
main user interface class for the visualization tool extends jpf-
shell’s ShellPanel class. In this case, the parent container
for all the Ul is the ShellPanel object itself as opposed to
a new separate JFrame needed for standalone applications.

The visualization provides various features to aid in trace
analysis, most of which have been discussed in the first part of
this paper. The main application GUI is shown in Fig. 18. The
view displayed is the source view that displays a program’s
source code interleaved with its corresponding bytecode. The
tool also provides a set of trace playback controls to aid
developers in navigating traces when debugging.

VI. FUTURE PLANS

There is a large amount of information generated during
the model checking run since the information about the
program heap, operand stacks, and the executed bytecode
instructions is tracked. For real world programs the large
amounts of data can prove to be problematic. To mitigate this,
we plan to use the jpf-trace-server® that stores the executed
instructions, program heap and operand stack information in
a database. This database can be systematically queried to get
information about the concrete execution. The visualization

3http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server

Generating the actual trace files.

File Location TypeFilter View Options

lIl lIl Thread Fiter: [a1

reorder. SetCheck x | reorder.SetThread x | reorderReorderTest x | reorder.CheckThread [RefinedAbstractTrace1
(ConcreteTrace1

[] setect Trace: [Concretetraceo [»|[sotoimearirace |

package rearder;

public class ReorderT

public void run(y {

SetThread[] sts = new SecThread [iSec]:

KIhread(] cta = new CheckThread[iCheckl:

Program Heap | Thread Locations | Operand Stack for Method Node Information

Value

| Variable Name Type
a eorder ReorderTest
=clinit>

iconst_ 2

o

Class

b

iCheck
iset
sc

static int iSel=2;

cu Ged
N

ftrue

o

(conditionalbranch

Fig. 18.

The visualization tool.

tool will provide the interface to query the jpf-trace-server.
Moreover, the trace format used by the tool is not optimal. The
generated XML file may contain repetitive information about
each program location since these locations are added to the
file as they are encountered. The amount of information stored
could be reduced during the switch to the jpf-trace-server.
Currently the visualization tool has just been used internally.
Another avenue for future work is to perform a user-study
in order to evaluate the utility of the visualization in facili-
tating the debugging of concurrent programs. An interesting

& JPF Shell - reorderjof

® Vv

Properties © | Report © | TestOutput © | Verify Output | Config View © | Logger ©* | Visualize Traces

reorder.SetCheck x | reorder.SetThread x | Test » | reorderCheckThread » |

D

hrow new RuntimeException("bug found");

Program Heap | Thread Locations | Operand Stack for Method Node Information

} Variable Name Type Value

Value
reorder CheckThread

un

aload_0

o
7

iCheck
iSet

i
boolean rst=sc.check()
L

[CLlsers\swesonaalinfint auided-tesfhuildiexamnle

T

|

Fig. 19. The visualization as part of the JPF shell.

dimension of the user study would be to evaluate if such a
visualization tool can be helpful to students learning about
concurrency. A tool like this can potentially be used as teach-
ing aid to help students understand the effects of concurrency
and provide intuition on how threads interact.

VII. CONCLUSION

The tool described in this paper helps understand error
traces in concurrent programs found through guided model
checking. The tool presents to the user the evolution of an
error trace containing minimal thread interactions over critical
program locations. Such an error trace evolution, aids in
debugging as the user can start with an initial set of thread
interactions that is easy to conceptualize, and then one by one,
add other thread interactions until the error is reachable. With
each thread interaction added to the trace, the user is able to
incrementally internalize her mental model of the system in
debugging the root cause of the error.

The G-JPF tool is available from a mercurial repository at
http://babelfish.arc.nasa.gov/hg/jpf/jpf-guided-test. The Visu-
alization tool is the TraceVisualization program in the
edu.byu.cs.guided.search.visualize package.

REFERENCES

W. Visser, K. Havelund, G. Brat, and S. Park, “Model checking
programs,” in Proc. ASE, Grenoble, France, September 2000.

N. Rungta, E. G. Mercer, and W. Visser, “Efficient testing of concurrent
programs with abstraction-guided symbolic execution,” in Proc. SPIN
Workshop. Springer—Verlag, 2009.

[3] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” SIGPLAN Not., vol. 42, no. 6, pp.
446455, 2007.

P. Godefroid, “Verisoft: A tool for the automatic analysis of concurrent
reactive software,” in Computer Aided Verification, 1997, pp. 476-479.
[Online]. Available: citeseer.nj.nec.com/godefroid97verisoft.html

C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan, “Dynamic model
checking with property driven pruning to dectect data race conditions,”
in ATVA, ser. LNCS. Seoul, Korean: Springer, 2008.

N. Rungta and E. G. Mercer, “Clash of the titans: tools and techniques
for hunting bugs in concurrent programs,” in PADTAD ’09. ACM,
2009, pp. 9:1-9:10.

K. Sen, “Race directed random testing of concurrent programs,” SIG-
PLAN Not., vol. 43, no. 6, pp. 11-21, 2008.

[8] N. Rungta and E. G. Mercer, “Guided model checking for programs
with polymorphism,” in PEPM. New York, NY, USA: ACM, 2009,
pp. 21-30.

[1]
[2]

[4]

[5]

[6]

[7]

[9]

(10]

[11]

(12]

(13]

Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur, “Towards a framework
and a benchmark for testing tools for multi-threaded programs: Research
articles,” Concurr. Comput. : Pract. Exper., vol. 19, no. 3, pp. 267-279,
2007.

K. Havelund, “Using runtime analysis to guide model checking of Java
programs,” in Proceedings of the 7th International SPIN Workshop on
Software Model Checking. London, UK: Springer-Verlag, 2000, pp.
245-264.

Java PathFinder Tool-set, “http://babelfish.arc.nasa.gov/trac/jpf.”

D. Engler and K. Ashcraft, “RacerX: effective, static detection of race
conditions and deadlocks,” in Proc. SOSP ’03. New York, NY, USA:
ACM Press, 2003, pp. 237-252.

S. Edelkamp and T. Mehler, “Byte code distance heuristics and trail
direction for model checking Java programs,” in Proc. MoChArt, 2003,
pp. 69-76.

