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model checking

program / model

model checker

void add(object o) {
buffer[head] = o;
head = (head+1)%size;

} YES (property holds)

Object take() {
tail=Ctail+l)%size;

return buffer[taill;
1

/ N\

NO + counterexample:

property

always(¢ or )

Line 5: ..
Line 12: ..

Line 41:..
Line 47:..




compositional verification

does system made up of M, and M, satisfy property P?

M

check P on entire system: too many states!

use system’ s natural decomposition into components to
break-up the verification task

check components in isolation:

Does M, satisfy P?

— typically a component is designed to satisfy its
requirements in specific contexts

Assume-guarantee reasoning
[Misra&Chandy 81, Jones 83, Pnueli 84]
— introduces assumption A representing M,’s context



assume-guarantee reasoning

reasons about triples:

(A) M (P)| is true if whenever M is part of a

system that satisfies A, then the system must
also guarantee P

simplest assume-guarantee rule (AsyMm):

. (A) M, (P) “discharge” the
2. (true) M, (A) <«=T" assumption

(true) M, || M, (P)




examples of assumptions

» no file “close” before “open”

7

» accesses to shared variable “X” must be protected by lock “L

» (rover executive) whenever thread “A” reads variable “V”, no
other thread can read “V” before thread “A” clears it first

» (spacecraft flight phases) a docking maneuver can only be
invoked if the launch abort system has previously been
jettisoned from the spacecraft



assume-guarantee reasoning

how do we compute assumptions?



formalisms

» components modeled as finite state machines (FSM)
— FSMs assembled with parallel composition operator “||”

— synchronizes shared actions, interleaves remaining actions
» alphabet of M: aM
» language of M: L(M)
— the set of all traces (with T removed) in M
» projection
— t} 2 — the trace obtained from t by removing all actions not in 2

— M" 2 - replace with 7t all actions not in 2



formalisms

» a safety property P is a FSM

— P describes all legal behaviors in terms of its alphabet
» property satisfaction: M |= Piff L(MTaP) C £(P)
» alternative definition

— P_.. — complement of P (determinize & complete P with “error” state)

— bad behaviors lead to error

» M |= P iff error state unreachable in (M || P.,,)
» assume-guarantee reasoning

— assumptions and guarantees are FSMs
— (A) M (P) holds iff error state unreachable in (A || M || P,,,)



example

require in and out to alternate (property Order)

o 1
—

ack




parallel composition




property satisfaction

cex. I: (ly, Op) out (15, Ogpror)
cex. 2: (I, Op) in (l4, O4) send (I,, O,) out (I,, Op) out (I,, Ogror)



the weakest assumption

" |

» given component M, property P, and the interface ) of M
with its environment, generate the weakest environment
assumption WA such that: (WA) M (P) holds

» weakest means that for all environments E:

(true) M || E (P) IFF (true) E (WA)



the weakest assumption

Weakest assumption
» Prevents component to go to error (safe)
» Should be as permissive as possible

» Uses only interface actions



assumption generation [ASE’ 02]

STEP |: composition with P__, property true!
hiding internals, minimization

|

STEP 2: backward propagation of property false!
error along T transitions

1

STEP 3: property extraction (subset '
construction & completion) assumption

(all environments)

(all environments)



step |: composition & hiding

Input || Order,,, \ {in} in send out
* Input Output -

ack

out
out




step 2: error propagation with t

o/
out
out

ack




step 3: subset construction

out
out




step 3: subset construction

\ out




step 3: property construction

‘4 out © ack

vk, send, out out

ack




weakest assumption in AG reasoning

. (A) M, (P)
2. (true) M, (A) weakest assumption makes
(true) M, || M, (P) rule complete

(WA) M, (P) holds (WA could be false)
(true) M, (WA) holds implies (true) M, || M, (P) holds
(true) M, (WA) not holds implies {true) M, || M, (P) not holds



learning assumptions

iterative solution
intermediate results



L* algorithm by Angluin, improved by Rivest & Schapire

Learns an unknown regular language U (over alphabet )
Produces a DFA A such that £ (A) =U

Uses a teacher to answer two types of questions

L*

|

Unknown regular
language U

query: string s

>

issinU?

|[remove string t

false

false

conjecture: A,

o Is £(A)=U? [—

output DFAA
such that £ (A) = U

1€
add string t

false




learning assumptions

Use L* to generate candidate assumptions 1. A My (P)
oA = (aM, U aP) N aM, 2. (true) M, (A
(true) My || My (P)

< true Model Checking
query: string s
(s) M, (P)
]

false

A 4

<

remove ttaA

_ false (cex. t)
L* conjecture: A,
"L AYM, P)

true
(true) M, (AY F=s P holds in M, || M,
} false (cex. t)

counterex. analysis
YIS felse

gdd tfaA el traAYM, (P) =P violated




characteristics

assumptions conjectured by L* are not comparable semantically

» terminates with minimal automaton A for U
» generates DFA candidates A: [A|| < |A,| < ... <|A]
» produces at most n candidates, where n = |A|
» # queries: O(kn? + n logm),
— m is size of largest counterexample, k is size of alphabet

» for assume-guarantee reasoning, may terminate early with a
smaller assumption than the weakest



example

we check: (true) Input || Output (Order)
M, = Input, M, = Output, P = Order

assumption alphabet: {send, out, ack}



queries

E
Table T A

S A true
out false

ack true

S°2 | out false
send true

out, ack false

out, out false

out, send false

S = set of prefixes
E = set of suffixes



candidate construction

E
Table T A .
S A true 7 2 states — error state omitted
out false
ack true _
Assumption A
S' 2| oyt false P 1
send true ack
out, ack false send
out, out false
out, send false

counterexamples add to S

S = set of prefixes
E = set of suffixes



conjectures

ack ‘ Oracle 1:
send()() (A,) Input (Order)
A,: send
Queries
) 2K
out, send

‘ Counterexample:

‘ Return to L*:
c = (in,send,ack,in) ct 2 = (send,ack)

Oracle 1: Oracle 2:
=) (A,) Input (Order) mm) (true) Output (A,)
True True

‘ property Order holds
on Input || Output



extension to n components

» Checkif M, [| M, || ... || M, satisfies P
— decompose it into M, and
~ M, =M, || LM,

apply learning framework recursively

1. (A1) M, (P) for 2" premise of rule
1. (A2) M, (A1)

(true) M1 ” M2 ” Mn <P> 2 <tl’U9> M’3 <A2> _.__)
(truey M, ... || M, (A1)




Mars Exploration Rover (MER)
Resource Arbiter

» Local management of resource
contention between resource
consumers

» E.g. science instruments,
communication systems

» l< user threads and one server thread
(arbiter)

Mutual exclusion between resources

» E.g. driving while capturing a camera
image are mutually incompatible

U
3 Request, Cancel
U >
2
U Grant, Deny
1 Rescind

ARB




recursive invocation

» Compute A, ... Ags.t.
(AU, (P) & (crue) U, || Us || U, || Us || ARB (A}
(Ay) U, (A)) & (true) U, || U, || Us || ARB (A))
(A Us (Ag) & (true) Uy || Us [| ARB (A,)
(Ag) Uy (Ay) & (true) Us || ARB (A,)
(As) Us (A,) & (true) ARB (As)
» Result: (true) U, || .. || Us || ARB (P) holds

» Compositional verification scaled to >5 users while
monolithic verification ran out of memory
[SPIN’ 06]

@“c @c @F @c .@_c

ARB




symmetric rule

1. A) My (P)
2. (A) My (P)

3. PEAAA,

(true) My || M, (P)




symmetric rule

1. (A) M, (P
2. (A) M, (P)

3. PEAAA Unsound!
(true) My || M, (P)

b a 2
a b £



symmetric rule [Misra&Chandi TSE’81]

1. M, EA, P
2. M, EA, P

3. P=A1/\A2

(true) My || M, (P) Sound!

» Not sound if & s interpreted as logical implication

» Use induction over time steps:
— P holds initially in M
— if assumption A holds up to the k-th step in any trace of M, then
— guarantee P holds up to the k+I-th step in that trace, for all k=20



symmetric rule [SAVCBS05]

1. (A) My (P)

2. (A M, (P)
Common traces ruled out
3. [ (COA1 || COAZ) C L (P) [ by assumptions satisfy P

(true) M, || M, (P) Sound!

coA. = complement of A, for i=1,2
oP € aM, U aM,; oA € (aM, N aM,) U aP, for i =1,2



learning framework [SAVCBSO05

add counterex.

add counterex.

vyY

L* L* ;
remove remove
counterex. A, A, counterex.
v v
A) M, (P A)YM, (P
false (Aa) My (P) (A2 M, (P) false
true true

v

L(coA, || coA,) C L(P):t&. P holds in M, ||M,

false

\ 4

counterex.
analysis

— P violated in M,||M,




circular rule [Grumberg&lLong Concur’91]

1. A) My (P)
2. (A My (A)

3. (true) M; (A,)

(true) My || My (P)

» Similar to asymmetric rule
— Applied recursively to 3 components
— First and last component coincide
— Hence learning framework similar
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compositional verification

Does system made up of M, and M, satisfy property P?

Check P on entire system: too many states!

Use the natural decomposition of the system into its
components to break-up the verification task

Check components in isolation:

Does M, satisfy P?

— Typically a component is designed to satisfy its
requirements in specific contexts / environments

Assume-guarantee reasoning:

— Introduces assumption A representing M,” s “context”




assume-guarantee reasoning

» Reason about triples:
(A) M (P)
The formula is true if whenever M is part of a system that
satisfies A, then the system must also guarantee P

» Simplest assume-guarantee rule — ASYM

. (A M, (P) “discharge” the
2. (true) M, (A) |€= assumption

A (true) M, || M, (P)

How do we come up with the assumption A?
(usually a difficult manual process)

Solution: synthesize A automatically



the weakest assumption

» Given component M, property P, and the interface of M with
its environment, generate the weakest environment
assumption WA such that: (WA) M (P) holds

» Weakest means that for all environments E:

(true) M || E (P) IFF (true) E (WA)



assumption generation [ASE’ 02]

minimization

|

STEP 2: backward propagation of property false!
error along T transitions

1

STEP 3: property extraction (subset '
construction & completion) assumption

STEP |: composition, hiding, ‘ , Property true!

(all environments)

(all environments)



learning for assume-guarantee reasoning

» use an off-the-shelf learning algorithm to build assumption

. A M (P
2. (truey M, (A)

(true)y My [| M, (P)

» process is iterative

» assumptions generated by querying the system, gradually refined
» queries answered by model checking

» refinement based on counterexamples



learning assumptions

» Use L* to generate candidate assumptions

A= (oM, UaoP)NaoaM
P ATt e e Model Checkin .o W M (P
1 true oael HeeEng 2. (truey M, (A)
query: string s true) M. || M, (P
Tov e (true) M || M, (P)
I |
false

j string ¢ oA

false + cex c
" (AY M, (P)
L true
(true) M, (A) €L b holds in M, || M,
| false + cex ¢
string ¢ oA fctod) M, (PYfalse | o ioiated in M1 || M2

€ | |
true

L* conjecture: A

» guaranteed to terminate
» reaches weakest assumption or terminates earlier



assumption alphabet refinement

» rule ASYM M, I

— Assumption alphabet was fixed during learning 1111
— oA = (O(M| U OCP) M OLMZ

» [SPIN’06]: A subset alphabet M,

— may be sufficient to prove the desired property

— may lead to smaller assumption



assumption alphabet refinement

error

error

assumption
a O a
b
b O
c O

interface action d not relevant for the property

» e.g.may never appear on a path to error

» no need to include in alphabet assumption

» results in smaller assumption



assumption alphabet refinement [TACAS'07]

» How do we compute a good subset of M, I
the assumption alphabet? T
» Solution: iterative alphabet refinement
— Start with small alphabet Mz

— Apply learning framework
— Add actions as necessary

— Discovered by analysis of
counterexamples from model checking



learning with alphabet refinement

|. Initialize 2 to subset of alphabet A = (oM, U aP) N aM,

2. If learning with 2. returns true, return true and go to 4. (END)

3. If learning returns false (with counterexample c), perform

extended counterexample analysis on c.

If c is real, return false and go to 4. (END)

If ¢ is spurious, add more actions from oA to 2 and go to 2.

4. END



extended counterexample analysis

(s) M, (P) oA = (aM, U aP) N aM,
)3 2. C oA is the current alphabet
conjecture: A,
1AM, (P)
v
L* (true) M, (A) |—P holds

jfalse + cex t

true false false _
T (DM, (P) [Fos—[(t12A) M, (P)}——P violated
y true
Refiner: compare

ctoA and tf oA

|

Add actions to 2
and restart learning




assumption under-approximation

» let A be assumption resulted from L* with full
interface alphabet oA

» during alphabet refinement:
— assumptions A’, A” with alphabets oA’ C 0dA” C oA

— are under-approximations, i.e.,
LA)S LAY S L(A)

» See also learning with optimal alphabet refinement
— developed independently by Chaki & Strichman 07



alphabet refinement

Y ={out} oA = { send, out, ack }

t12 = (out)
(true) Output (A,) =) false with t = (send, out)
—— ttaA=(send, out)
(t1Z) Input (P) =) false with counterex. ¢ = (out)

(ttaA) Input (P) =) true Not a real counterexample!

compare (out) with (send, out)y ——» add “send” to Y



comparison with original learning

Assumption size ®original B origina

Ours
Ours

thanks Mihaela Bobaru




comparison with non-compositional (memory)

GaS StatiOl’l -Mgnolithic Chiron Pz-Mgiiiithic

thanks Mihaela Bobaru




results

» Rule ASYM more effective than rules SYM and CIRC

» Recursive version of ASYM the most effective
— When reasoning about more than two components
» Alphabet refinement improves learning based assume
guarantee verification significantly
» Learning based assume guarantee reasoning
— Can incur significant time penalties

— Not always better than non-compositional (monolithic) verification
— Sometimes, significantly better in terms of memory



abstraction



assume-guarantee abstraction refinement (AGAR)

1.
2.

A M (P)
(true) M, (A)

(true) M, || M, (P)

» Instead of learning A, build A as an over-approximating

abstraction of M,
» Why!

— Use “more” information from M, and M
| 2

— Nondeterministic assumptions can be exponentially smaller than

deterministic ones

» [CAV’08]




assume-guarantee abstraction refinement (AGAR)

abstract transition

. A M (P
2. ({truey M, (A)

(true) M, || M, (P)

» Existential abstraction
— Maps concrete states in M, to abstract states in A

— Add abstract transition in A if exists “corresponding” concrete
transition in M,

_ [(M,}0A) C L(A)
» Premise 2: (true) M, (A) holds by construction



AGAR

AGAR

abstraction A, of M,,

(truey M, (A)
by construction

4reflne

blocked

(A) M, (P)

1. A M (P
2. (true) M, (A)

(truey My || M, (P)

Model Checking

true

»P holds in M, || M,

lfalse (cex.)

cex. spurious

cex. analysis

simulate cex on M, L>P violated

» Variant of CEGAR with differences:

— use counterexample from M, to refine abstraction of M,
— A keeps information only about the interface (abstracts away the internals)

» Assumptions and number of iterations bounded by |M,|



example: AGAR results

ack
send
out Check: (A;) M, (P)
Abstract cex.:

{0,1,2}, out, {0,1,2}



example: AGAR results

A A send

2-
2 (R HED LT send
Check: (A,) M, (P) out

Abstract cex.:
{0,1,2}, out, {0,1,2}



example: learning results

Output’:  send

send

A A,: send As' send
ack ack
send
out,send a

e
ck 8 send

ack,out,send

ack,out,send



AGAR vs learning

Table 1. Companson of AGAR and learning for 2 components, with and without alphabet refinement

No alpha. ref. With alpha. ref. |
Casc L AGAR Leaming AGAR Learning Sizes
[A[Mem. [ Time | [A] [Mem. [ Time [[JA][Mem. | Time [JA][Mem. | Time [[TM || Fay || [M2]
Cas Staton [3] 16 ] 411 | 333 | 177 3285 - S1200 [ 2008 [ 3.28 [ 340 1060 643
4119|3743 (2312 195 [100.17] - 5122791280 8 [25.21] 1946 16464 1623
5] 22(359.53|278.63| 45 20661 - 5 |216.07|83.34 | 8 |207.29] 188.98 134456 | 3447
Chiron, (10 1.30 [ 0.02 7 T30 [ 160 [[I0] 1.0 [ 1.56 | 8 [ L.22 | 5.17 737 02
Property 2 |3 36| 259 [ 594 | 21 | 559 [ 7.08 [[36] 244 [10.23| 20 | 6.00 | 3075 449 122
4l160] 871 [15234] 30 | 27.1 | 32.05||160] 8.22 |252.06| 38 | 41.50 | 180.82 804 5559
5| 45514 - 111 [569.23]676.02|] 3 | 5871 - [t110] - | 3866 2030 [120228
Chiron, 2[4 107 [ 0.50 9 TId [ 157 [[4]1.23]062] 3] 1.06 | 001 258 102
Property 3 (3 8 | 1.84 | 1.60 |25njmj| 445 | 7.72 (| 8 | 200 | 365 [ 3 | 228 | LI12 482 122
4116 401 [1875] 45 [2549|3633|| 16| 508 |10750[ 3 | 7.30 | 1.95 846 5559
5| 45253 - 122 [134.21[27130( 1 | 8189 - | 3 [163.45] 19.43 2084  [120228
MER [ 132 [1138] 40 [ 6 (OB [[S [ 132 [S02[ 6 [ 1.80 [ 1.28 133 1270
3| 67| 810 |247.73| 335 13334 - 0 [ 11.00 [180.13] 8 | 878 | 1256 6683 7138
4|58 |341.49| - 38 37721 - 0 (53240 -~ | 10 |489.51|1220.62|| 307623 | 228%6
[RoverExcc. [2[10] 407 | 180 | 11 | 270 | 235 [ 3| 262 | 207 | 2 | 236 | 330 | >4 | 41 |




AGAR vs learning

» No alphabet refinement:

— 14 cases, better in 9 (assumption size), 12 (memory consumption),
|0 (running time)

» With alphabet refinement:

— |5 cases: better in 5, 7, 6, respectively

» Problem: unbalanced decompositions
— Learning exercises more first component

— AGAR dominated by second component



AGAR vs learning

Balanced decompositions

» No alphabet refinement:

— 9 cases, better in 8 (assumption size), 9 (memory consumption),
9 (running time)

» With alphabet refinement:

— 12 cases, better in 7, 7, and 6, respectively



reasoning about code

» Does M, || M, satisfy P? Model check; build assumption A

» Does C, || C, satisfy P2 Model check; use assumption A

[ICSE’ 2004] — good results but may not scale
Solution: replace model checking with testing! [IET Software 2009]



assumption generation for software components

given component C compute
weakest assumption (WA):

» safe:accept NO illegal sequence
of calls

" permissive: accept ALL legal
sequences of calls

C is not a model but an actual
(infinite-state) implementation



may and must abstraction

» software component C may be infinite state

» apply predicate abstraction

» may abstraction produces a finite over-approximation

» must abstraction produces a finite under-approximation

/ must transition

L X )
| ]

may transition \

®

Cmay




assumption generation for infinite-state components

> Lsafe(C): Lerr(C)
Interface A is safe: L(A) C Ls¢(C)
Interface A is permissive: Ls¢(C) C L(A)

Lerr(cmay)

Lsafe(c)

An interface A permissive w.r.t. C's must abstraction and
safe w.r.t C's may abstraction is safe and permissive for C.




assumption generation for infinite-state components

Build WA

Predicate
abstraction

Refine |1

An interface A permissive w.r.t. C's must abstraction and
safe w.r.t C's may abstraction is safe and permissive for C.




assumption generation for infinite-state components

» conceptually simple

» if concrete component is deterministic, so is the must
abstraction

» can use learning for building WA

» expensive learning restarts; need of tighter integration of
abstraction refinement with L*

» LearnReuse method [CAV’08]

» ARMC model checker: Java2SDK library classes, OpenSSL,
NASA CEV model



interface generation in Java PathFinder

» [FASE'09]

» uses L* with heuristic for permissiveness check

» applies to JPF’s state-chart extension

» recent work combines learning with symbolic execution [SAS’12]

System under Test
(Java bytecode)

3
JPF core ‘ verification l
:> :> artifact
m :> JPF . report
extension - test case

« specification
JPF configuration P

abstract virtual machine

« execution semantics
* program properties

Java PathFinder (JPF)



compositional verification for probabilistic systems

» labeled transition systems with both probabilistic and non-
deterministic behavior

» verification of strong simulation conformance
» counterexamples are probabilistic tree structures
» assume-guarantee abstraction refinement [CAV’|2]

» learning from probabilistic tree samples [LICS’|2]
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conclusion

» techniques for automatic assumption generation and
compositional verification

— finite state models and safety properties
— learning and abstraction

» data abstraction to deal with software implementations
» promising in practice — when interfaces are small

future

» discovering good system decompositions

» parallelization for increased scalability

» beyond safety: liveness, timed and probabilistic reasoning
» run-time analysis

» make it practical!



thank you!



