Automated
Compositional
Verification
part |

Corina Pasareanu
CMU Silicon Valley/ NASA Ames Research Center

outline

Part | Part Il

» assume-guarantee reasoning » alphabet refinement

» computing assumptions » assume-guarantee abstraction
» learning assumptions refinement

» multiple components » reasoning about code

» different assume-guarantee » related work

rules » conclusion

Dimitra Giannakopoulou and ... many collaborators

model checking

program / model

model checker

void add(object o) {
buffer[head] = o;
head = (head+1)%size;

} YES (property holds)

Object take() {
tail=Ctail+l)%size;

return buffer[taill;
1

/ N\

NO + counterexample:

property

always(¢ or)

Line 5: ..
Line 12: ..

Line 41:..
Line 47:..

compositional verification

does system made up of M, and M, satisfy property P?

M

check P on entire system: too many states!

use system’ s natural decomposition into components to
break-up the verification task

check components in isolation:

Does M, satisfy P?

— typically a component is designed to satisfy its
requirements in specific contexts

Assume-guarantee reasoning
[Misra&Chandy 81, Jones 83, Pnueli 84]
— introduces assumption A representing M,’s context

assume-guarantee reasoning

reasons about triples:

(A) M (P)| is true if whenever M is part of a

system that satisfies A, then the system must
also guarantee P

simplest assume-guarantee rule (AsyMm):

. (A) M, (P) “discharge” the
2. (true) M, (A) <«=T" assumption

(true) M, || M, (P)

examples of assumptions

» no file “close” before “open”

7

» accesses to shared variable “X” must be protected by lock “L

» (rover executive) whenever thread “A” reads variable “V”, no
other thread can read “V” before thread “A” clears it first

» (spacecraft flight phases) a docking maneuver can only be
invoked if the launch abort system has previously been
jettisoned from the spacecraft

assume-guarantee reasoning

how do we compute assumptions?

formalisms

» components modeled as finite state machines (FSM)
— FSMs assembled with parallel composition operator “||”

— synchronizes shared actions, interleaves remaining actions
» alphabet of M: aM
» language of M: L(M)
— the set of all traces (with T removed) in M
» projection
— t} 2 — the trace obtained from t by removing all actions not in 2

— M" 2 - replace with 7t all actions not in 2

formalisms

» a safety property P is a FSM

— P describes all legal behaviors in terms of its alphabet
» property satisfaction: M |= Piff L(MTaP) C £(P)
» alternative definition

— P_.. — complement of P (determinize & complete P with “error” state)

— bad behaviors lead to error

» M |= P iff error state unreachable in (M || P.,,)
» assume-guarantee reasoning

— assumptions and guarantees are FSMs
— (A) M (P) holds iff error state unreachable in (A || M || P,,,)

example

require in and out to alternate (property Order)

o 1
—

ack

parallel composition

property satisfaction

cex. I: (ly, Op) out (15, Ogpror)
cex. 2: (I, Op) in (l4, O4) send (I,, O,) out (I,, Op) out (I,, Ogror)

the weakest assumption

" |

» given component M, property P, and the interface) of M
with its environment, generate the weakest environment
assumption WA such that: (WA) M (P) holds

» weakest means that for all environments E:

(true) M || E (P) IFF (true) E (WA)

the weakest assumption

Weakest assumption
» Prevents component to go to error (safe)
» Should be as permissive as possible

» Uses only interface actions

assumption generation [ASE’ 02]

STEP |: composition with P__, property true!
hiding internals, minimization

|

STEP 2: backward propagation of property false!
error along T transitions

1

STEP 3: property extraction (subset '
construction & completion) assumption

(all environments)

(all environments)

step |: composition & hiding

Input || Order,,, \ {in} in send out
* Input Output -

ack

out
out

step 2: error propagation with t

o/
out
out

ack

step 3: subset construction

out
out

step 3: subset construction

\ out

step 3: property construction

‘4 out © ack

vk, send, out out

ack

weakest assumption in AG reasoning

. (A) M, (P)
2. (true) M, (A) weakest assumption makes
(true) M, || M, (P) rule complete

(WA) M, (P) holds (WA could be false)
(true) M, (WA) holds implies (true) M, || M, (P) holds
(true) M, (WA) not holds implies {true) M, || M, (P) not holds

learning assumptions

iterative solution
intermediate results

L* algorithm by Angluin, improved by Rivest & Schapire

Learns an unknown regular language U (over alphabet)
Produces a DFA A such that £ (A) =U

Uses a teacher to answer two types of questions

L*

|

Unknown regular
language U

query: string s

>

issinU?

|[remove string t

false

false

conjecture: A,

o Is £(A)=U? [—

output DFAA
such that £ (A) = U

1€
add string t

false

learning assumptions

Use L* to generate candidate assumptions 1. A My (P)
oA = (aM, U aP) N aM, 2. (true) M, (A
(true) My || My (P)

< true Model Checking
query: string s
(s) M, (P)
]

false

A 4

<

remove ttaA

_ false (cex. t)
L* conjecture: A,
"L AYM, P)

true
(true) M, (AY F=s P holds in M, || M,
} false (cex. t)

counterex. analysis
YIS felse

gdd tfaA el traAYM, (P) =P violated

characteristics

assumptions conjectured by L* are not comparable semantically

» terminates with minimal automaton A for U
» generates DFA candidates A: [A|| < |A,| < ... <|A]
» produces at most n candidates, where n = |A|
» # queries: O(kn? + n logm),
— m is size of largest counterexample, k is size of alphabet

» for assume-guarantee reasoning, may terminate early with a
smaller assumption than the weakest

example

we check: (true) Input || Output (Order)
M, = Input, M, = Output, P = Order

assumption alphabet: {send, out, ack}

queries

E
Table T A

S A true
out false

ack true

S°2 | out false
send true

out, ack false

out, out false

out, send false

S = set of prefixes
E = set of suffixes

candidate construction

E
Table T A .
S A true 7 2 states — error state omitted
out false
ack true _
Assumption A
S' 2| oyt false P 1
send true ack
out, ack false send
out, out false
out, send false

counterexamples add to S

S = set of prefixes
E = set of suffixes

conjectures

ack ‘ Oracle 1:
send()() (A,) Input (Order)
A,: send
Queries
) 2K
out, send

‘ Counterexample:

‘ Return to L*:
c = (in,send,ack,in) ct 2 = (send,ack)

Oracle 1: Oracle 2:
=) (A,) Input (Order) mm) (true) Output (A,)
True True

‘ property Order holds
on Input || Output

extension to n components

» Checkif M, [| M, || ... || M, satisfies P
— decompose it into M, and
~ M, =M, || LM,

apply learning framework recursively

1. (A1) M, (P) for 2" premise of rule
1. (A2) M, (A1)

(true) M1 ” M2 ” Mn <P> 2 <tl’U9> M’3 <A2> _.__)
(truey M, ... || M, (A1)

Mars Exploration Rover (MER)
Resource Arbiter

» Local management of resource
contention between resource
consumers

» E.g. science instruments,
communication systems

» l< user threads and one server thread
(arbiter)

Mutual exclusion between resources

» E.g. driving while capturing a camera
image are mutually incompatible

U
3 Request, Cancel
U >
2
U Grant, Deny
1 Rescind

ARB

recursive invocation

» Compute A, ... Ags.t.
(AU, (P) & (crue) U, || Us || U, || Us || ARB (A}
(Ay) U, (A)) & (true) U, || U, || Us || ARB (A))
(A Us (Ag) & (true) Uy || Us [| ARB (A,)
(Ag) Uy (Ay) & (true) Us || ARB (A,)
(As) Us (A,) & (true) ARB (As)
» Result: (true) U, || .. || Us || ARB (P) holds

» Compositional verification scaled to >5 users while
monolithic verification ran out of memory
[SPIN’ 06]

@“c @c @F @c .@_c

ARB

symmetric rule

1. A) My (P)
2. (A) My (P)

3. PEAAA,

(true) My || M, (P)

symmetric rule

1. (A) M, (P
2. (A) M, (P)

3. PEAAA Unsound!
(true) My || M, (P)

b a 2
a b £

symmetric rule [Misra&Chandi TSE’81]

1. M, EA, P
2. M, EA, P

3. P=A1/\A2

(true) My || M, (P) Sound!

» Not sound if & s interpreted as logical implication

» Use induction over time steps:
— P holds initially in M
— if assumption A holds up to the k-th step in any trace of M, then
— guarantee P holds up to the k+I-th step in that trace, for all k=20

symmetric rule [SAVCBS05]

1. (A) My (P)

2. (A M, (P)
Common traces ruled out
3. [(COA1 || COAZ) C L (P) [by assumptions satisfy P

(true) M, || M, (P) Sound!

coA. = complement of A, for i=1,2
oP € aM, U aM,; oA € (aM, N aM,) U aP, for i =1,2

learning framework [SAVCBSO05

add counterex.

add counterex.

vyY

L* L* ;
remove remove
counterex. A, A, counterex.
v v
A) M, (P A)YM, (P
false (Aa) My (P) (A2 M, (P) false
true true

v

L(coA, || coA,) C L(P):t&. P holds in M, ||M,

false

\ 4

counterex.
analysis

— P violated in M,||M,

circular rule [Grumberg&lLong Concur’91]

1. A) My (P)
2. (A My (A)

3. (true) M; (A,)

(true) My || My (P)

» Similar to asymmetric rule
— Applied recursively to 3 components
— First and last component coincide
— Hence learning framework similar

Automated
Compositional
Verification
part 2

Corina Pasareanu
CMU Silicon Valley/ NASA Ames Research Center

outline

Part | Part Il

» assume-guarantee reasoning » alphabet refinement

» computing assumptions » assume-guarantee abstraction
» learning assumptions refinement

» multiple components » reasoning about code

» different assume-guarantee » related work

rules » conclusion

compositional verification

Does system made up of M, and M, satisfy property P?

Check P on entire system: too many states!

Use the natural decomposition of the system into its
components to break-up the verification task

Check components in isolation:

Does M, satisfy P?

— Typically a component is designed to satisfy its
requirements in specific contexts / environments

Assume-guarantee reasoning:

— Introduces assumption A representing M,” s “context”

assume-guarantee reasoning

» Reason about triples:
(A) M (P)
The formula is true if whenever M is part of a system that
satisfies A, then the system must also guarantee P

» Simplest assume-guarantee rule — ASYM

. (A M, (P) “discharge” the
2. (true) M, (A) |€= assumption

A (true) M, || M, (P)

How do we come up with the assumption A?
(usually a difficult manual process)

Solution: synthesize A automatically

the weakest assumption

» Given component M, property P, and the interface of M with
its environment, generate the weakest environment
assumption WA such that: (WA) M (P) holds

» Weakest means that for all environments E:

(true) M || E (P) IFF (true) E (WA)

assumption generation [ASE’ 02]

minimization

|

STEP 2: backward propagation of property false!
error along T transitions

1

STEP 3: property extraction (subset '
construction & completion) assumption

STEP |: composition, hiding, ‘ , Property true!

(all environments)

(all environments)

learning for assume-guarantee reasoning

» use an off-the-shelf learning algorithm to build assumption

. A M (P
2. (truey M, (A)

(true)y My [| M, (P)

» process is iterative

» assumptions generated by querying the system, gradually refined
» queries answered by model checking

» refinement based on counterexamples

learning assumptions

» Use L* to generate candidate assumptions

A= (oM, UaoP)NaoaM
P ATt e e Model Checkin .o W M (P
1 true oael HeeEng 2. (truey M, (A)
query: string s true) M. || M, (P
Tov e (true) M || M, (P)
I |
false

j string ¢ oA

false + cex c
" (AY M, (P)
L true
(true) M, (A) €L b holds in M, || M,
| false + cex ¢
string ¢ oA fctod) M, (PYfalse | o ioiated in M1 || M2

€ | |
true

L* conjecture: A

» guaranteed to terminate
» reaches weakest assumption or terminates earlier

assumption alphabet refinement

» rule ASYM M, I

— Assumption alphabet was fixed during learning 1111
— oA = (O(M| U OCP) M OLMZ

» [SPIN’06]: A subset alphabet M,

— may be sufficient to prove the desired property

— may lead to smaller assumption

assumption alphabet refinement

error

error

assumption
a O a
b
b O
c O

interface action d not relevant for the property

» e.g.may never appear on a path to error

» no need to include in alphabet assumption

» results in smaller assumption

assumption alphabet refinement [TACAS'07]

» How do we compute a good subset of M, I
the assumption alphabet? T
» Solution: iterative alphabet refinement
— Start with small alphabet Mz

— Apply learning framework
— Add actions as necessary

— Discovered by analysis of
counterexamples from model checking

learning with alphabet refinement

|. Initialize 2 to subset of alphabet A = (oM, U aP) N aM,

2. If learning with 2. returns true, return true and go to 4. (END)

3. If learning returns false (with counterexample c), perform

extended counterexample analysis on c.

If c is real, return false and go to 4. (END)

If ¢ is spurious, add more actions from oA to 2 and go to 2.

4. END

extended counterexample analysis

(s) M, (P) oA = (aM, U aP) N aM,
)3 2. C oA is the current alphabet
conjecture: A,
1AM, (P)
v
L* (true) M, (A) |—P holds

jfalse + cex t

true false false _
T (DM, (P) [Fos—[(t12A) M, (P)}——P violated
y true
Refiner: compare

ctoA and tf oA

|

Add actions to 2
and restart learning

assumption under-approximation

» let A be assumption resulted from L* with full
interface alphabet oA

» during alphabet refinement:
— assumptions A’, A” with alphabets oA’ C 0dA” C oA

— are under-approximations, i.e.,
LA)S LAY S L(A)

» See also learning with optimal alphabet refinement
— developed independently by Chaki & Strichman 07

alphabet refinement

Y ={out} oA = { send, out, ack }

t12 = (out)
(true) Output (A,) =) false with t = (send, out)
—— ttaA=(send, out)
(t1Z) Input (P) =) false with counterex. ¢ = (out)

(ttaA) Input (P) =) true Not a real counterexample!

compare (out) with (send, out)y ——» add “send” to Y

comparison with original learning

Assumption size ®original B origina

Ours
Ours

thanks Mihaela Bobaru

comparison with non-compositional (memory)

GaS StatiOl’l -Mgnolithic Chiron Pz-Mgiiiithic

thanks Mihaela Bobaru

results

» Rule ASYM more effective than rules SYM and CIRC

» Recursive version of ASYM the most effective
— When reasoning about more than two components
» Alphabet refinement improves learning based assume
guarantee verification significantly
» Learning based assume guarantee reasoning
— Can incur significant time penalties

— Not always better than non-compositional (monolithic) verification
— Sometimes, significantly better in terms of memory

abstraction

assume-guarantee abstraction refinement (AGAR)

1.
2.

A M (P)
(true) M, (A)

(true) M, || M, (P)

» Instead of learning A, build A as an over-approximating

abstraction of M,
» Why!

— Use “more” information from M, and M
| 2

— Nondeterministic assumptions can be exponentially smaller than

deterministic ones

» [CAV’08]

assume-guarantee abstraction refinement (AGAR)

abstract transition

. A M (P
2. ({truey M, (A)

(true) M, || M, (P)

» Existential abstraction
— Maps concrete states in M, to abstract states in A

— Add abstract transition in A if exists “corresponding” concrete
transition in M,

_ [(M,}0A) C L(A)
» Premise 2: (true) M, (A) holds by construction

AGAR

AGAR

abstraction A, of M,,

(truey M, (A)
by construction

4reflne

blocked

(A) M, (P)

1. A M (P
2. (true) M, (A)

(truey My || M, (P)

Model Checking

true

»P holds in M, || M,

lfalse (cex.)

cex. spurious

cex. analysis

simulate cex on M, L>P violated

» Variant of CEGAR with differences:

— use counterexample from M, to refine abstraction of M,
— A keeps information only about the interface (abstracts away the internals)

» Assumptions and number of iterations bounded by |M,|

example: AGAR results

ack
send
out Check: (A;) M, (P)
Abstract cex.:

{0,1,2}, out, {0,1,2}

example: AGAR results

A A send

2-
2 (R HED LT send
Check: (A,) M, (P) out

Abstract cex.:
{0,1,2}, out, {0,1,2}

example: learning results

Output’: send

send

A A,: send As' send
ack ack
send
out,send a

e
ck 8 send

ack,out,send

ack,out,send

AGAR vs learning

Table 1. Companson of AGAR and learning for 2 components, with and without alphabet refinement

No alpha. ref. With alpha. ref. |
Casc L AGAR Leaming AGAR Learning Sizes
[A[Mem. [Time | [A] [Mem. [Time [[JA][Mem. | Time [JA][Mem. | Time [[TM || Fay || [M2]
Cas Staton [3] 16] 411 | 333 | 177 3285 - S1200 [2008 [3.28 [340 1060 643
4119|3743 (2312 195 [100.17] - 5122791280 8 [25.21] 1946 16464 1623
5] 22(359.53|278.63| 45 20661 - 5 |216.07|83.34 | 8 |207.29] 188.98 134456 | 3447
Chiron, (10 1.30 [0.02 7 T30 [160 [[I0] 1.0 [1.56 | 8 [L.22 | 5.17 737 02
Property 2 |3 36| 259 [594 | 21 | 559 [7.08 [[36] 244 [10.23| 20 | 6.00 | 3075 449 122
4l160] 871 [15234] 30 | 27.1 | 32.05||160] 8.22 |252.06| 38 | 41.50 | 180.82 804 5559
5| 45514 - 111 [569.23]676.02|] 3 | 5871 - [t110] - | 3866 2030 [120228
Chiron, 2[4 107 [0.50 9 TId [157 [[4]1.23]062] 3] 1.06 | 001 258 102
Property 3 (3 8 | 1.84 | 1.60 |25njmj| 445 | 7.72 (| 8 | 200 | 365 [3 | 228 | LI12 482 122
4116 401 [1875] 45 [2549|3633|| 16| 508 |10750[3 | 7.30 | 1.95 846 5559
5| 45253 - 122 [134.21[27130(1 | 8189 - | 3 [163.45] 19.43 2084 [120228
MER [132 [1138] 40 [6 (OB [[S [132 [S02[6 [1.80 [1.28 133 1270
3| 67| 810 |247.73| 335 13334 - 0 [11.00 [180.13] 8 | 878 | 1256 6683 7138
4|58 |341.49| - 38 37721 - 0 (53240 -~ | 10 |489.51|1220.62|| 307623 | 228%6
[RoverExcc. [2[10] 407 | 180 | 11 | 270 | 235 [3| 262 | 207 | 2 | 236 | 330 | >4 | 41 |

AGAR vs learning

» No alphabet refinement:

— 14 cases, better in 9 (assumption size), 12 (memory consumption),
|0 (running time)

» With alphabet refinement:

— |5 cases: better in 5, 7, 6, respectively

» Problem: unbalanced decompositions
— Learning exercises more first component

— AGAR dominated by second component

AGAR vs learning

Balanced decompositions

» No alphabet refinement:

— 9 cases, better in 8 (assumption size), 9 (memory consumption),
9 (running time)

» With alphabet refinement:

— 12 cases, better in 7, 7, and 6, respectively

reasoning about code

» Does M, || M, satisfy P? Model check; build assumption A

» Does C, || C, satisfy P2 Model check; use assumption A

[ICSE’ 2004] — good results but may not scale
Solution: replace model checking with testing! [IET Software 2009]

assumption generation for software components

given component C compute
weakest assumption (WA):

» safe:accept NO illegal sequence
of calls

" permissive: accept ALL legal
sequences of calls

C is not a model but an actual
(infinite-state) implementation

may and must abstraction

» software component C may be infinite state

» apply predicate abstraction

» may abstraction produces a finite over-approximation

» must abstraction produces a finite under-approximation

/ must transition

L X)
|]

may transition \

®

Cmay

assumption generation for infinite-state components

> Lsafe(C): Lerr(C)
Interface A is safe: L(A) C Ls¢(C)
Interface A is permissive: Ls¢(C) C L(A)

Lerr(cmay)

Lsafe(c)

An interface A permissive w.r.t. C's must abstraction and
safe w.r.t C's may abstraction is safe and permissive for C.

assumption generation for infinite-state components

Build WA

Predicate
abstraction

Refine |1

An interface A permissive w.r.t. C's must abstraction and
safe w.r.t C's may abstraction is safe and permissive for C.

assumption generation for infinite-state components

» conceptually simple

» if concrete component is deterministic, so is the must
abstraction

» can use learning for building WA

» expensive learning restarts; need of tighter integration of
abstraction refinement with L*

» LearnReuse method [CAV’08]

» ARMC model checker: Java2SDK library classes, OpenSSL,
NASA CEV model

interface generation in Java PathFinder

» [FASE'09]

» uses L* with heuristic for permissiveness check

» applies to JPF’s state-chart extension

» recent work combines learning with symbolic execution [SAS’12]

System under Test
(Java bytecode)

3
JPF core ‘ verification l
:> :> artifact
m :> JPF . report
extension - test case

« specification
JPF configuration P

abstract virtual machine

« execution semantics
* program properties

Java PathFinder (JPF)

compositional verification for probabilistic systems

» labeled transition systems with both probabilistic and non-
deterministic behavior

» verification of strong simulation conformance
» counterexamples are probabilistic tree structures
» assume-guarantee abstraction refinement [CAV’|2]

» learning from probabilistic tree samples [LICS’|2]

Learning Assumptions for Compositional Verification, J. M. Cobleigh, D. Giannakopoulou, C. S.
Pasareanu, TACAS’03.

Component Verification with Automatically Generated Assumptions, D. Giannakopoulou, C. S.
Pasareanu, H. Barringer, jASE’05.

Towards a Compositional SPIN, C. S. Pasareanu, D. Giannakopoulou, SPIN’06.

Learning to Divide-and-Conquer:Applying the L* Algorithm to Automate Assume-Guarantee
Reasoning, C. S. Pasareanu, D. Giannakopoulou, M. Gheorghiu Bobaru, |. M. Cobleigh, H. Barringer,
FMSD’08.

Assume Guarantee Testing for Software Components, D. Giannakopoulou, C. Pasareanu, C. Blundell,
IET Software’08.

Automated Assume-Guarantee Reasoning by Abstraction Refinement, M. Gheorghiu Bobaru, C. S.
Pasareanu, D. Giannakopoulou, CAV'08.

Assume Guarantee Verification for Interface Automata, M. Emmi, D. Giannakopoulou, C. S. Pasareanu,
FM'08.

Learning Component Interfaces with May and Must Abstractions, R. Singh, D. Giannakopoulou, C.
Pasareanu, CAV'10.

Learning Probabilistic Systems from Tree Samples, A. Komuravelli, C. S. Pasareanu, E. M. Clarke, LICS’ 1 2.

Assume-Guarantee Abstraction Refinement for Probabilistic Systems, A. Komuravelli, C. S. Pasareanu,
E. M. Clarke, CAV’12.

Symbolic Learning of Component Interfaces, D. Giannakopoulou, Z. Rakamaric,V. Raman, SAS’ | 2.

related work

interface automata:
L. de Alfaro, T.A. Henzinger: Interface Automata. ESEC/FSE 2001.
interfaces:
R. Alur, P. Cerny, P. Madhusudan,W. Nam: Synthesis of interface specifications for Java classes. POPL 2005.
T. A. Henzinger, R. Jhala, R. Majumdar: Permissive interfaces. ESEC/SIGSOFT FSE 2005.
learning for AG reasoning:

R. Alur, P. Madhusudan,W. Nam: Symbolic Compositional Verification by Learning Assumptions. CAV 2005.

S. Chaki, E. M. Clarke, N. Sinha, P. Thati: Automated Assume-Guarantee Reasoning for Simulation Conformance.
CAV 2005.

J- M. Cobleigh, G. S. Avrunin, L. A. Clarke: Breaking up is hard to do: an investigation of decomposition for assume-
guarantee reasoning. ISSTA 2006.

learning for separating automata:

A. Gupta, K. L. McMillan, Z. Fu: Automated Assumption Generation for Compositional Verification. CAV 2007.

Y-F Chen,A. Farzan, E. M. Clarke, Y-K Tsay, B-Y Wang: Learning Minimal Separating DFA's for Compositional
Verification. TACAS 2009.

assume-guarantee reasoning for probabilistic systems: many papers from Oxford University

L. Feng, M. Z. Kwiatkowska, D. Parker: Compositional Verification of Probabilistic Systems Using Learning. QEST
2010.

what about shared-memory communication, thread-modular reasoning, Owicki-Gries method?

A. Cohen, K. S. Namjoshi: Local Proofs for Linear-Time Properties of Concurrent Programs. CAV 2008.

conclusion

» techniques for automatic assumption generation and
compositional verification

— finite state models and safety properties
— learning and abstraction

» data abstraction to deal with software implementations
» promising in practice — when interfaces are small

future

» discovering good system decompositions

» parallelization for increased scalability

» beyond safety: liveness, timed and probabilistic reasoning
» run-time analysis

» make it practical!

thank you!

