Java Pathfinder Version 6
Scalability

/A

/ Ames Research Center

A

Wednesday, January 5, 2011

Goals A

Z Ames Research Center

4 develop new major JPF version to address scalability limiters identified
in VVEFCS milestone 06/30/2010

4 two limiters id

entified in VVFCS milestone 06/30/2010:

e (1) major: all

ocation time exponentially growing with heap size

 (2) superfluous transitions/states caused by standard thread
synchronization APIs

+

primary goals

+

are optimization efforts

additional goals:

e improve overall performance (garbage collection, state storage/
matching, partial order reduction)

e improve extensibility (can run contrary to optimization)
e reduce complexity hotspots (e.g. partial order reduction reachability

analysis)

Wednesday, January 5, 2011

Deliverable A

< Z Ames Research Center

4 JPF version 6 released 11/30/2010 on http://babelfish.arc.nasa.gov/hg/
pt/1pt-core

[~ = A

4 major development effort (hg history --stat -d”>07/01/10"):

e total change statistics since VVFCS milestone 06/30:
» 1439 files
» 40197 added lines
» 22906 removed lines

e change statistics related to main goal (allocation time optimization):
» 780 files
» 19319 added lines
» 1268’7 removed lines

Wednesday, January 5, 2011

http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

Results - Allocation Time (1)

/A

/ Ames Research Center

4 major success: exponential allocation time problem eliminated

4 v6 has linear allocation time

Absolute Run Time
12000

2 threadls \A
10000 L 2 threads v6

8000

6000

time [ms]

4000 +

2000
version 5

0 5000 10000 15000 20000

number of allocated objects

25000

30000

Wednesday, January 5, 2011

Results - Allocation Time (2) A

) / Ames Research Center

4 version 6 scales linearly up to >10e5 objects per thread

4 absolute allocation time reduced to same order of magnitude as host
VM heap management spikes (due to garbage collection / heap growth)

4 = allocation bottleneck eliminated

Absolute Run Time

350 | |
2 threads v6
300 -
150 | host VM heap mgnt spikes |
o 200 ¢ j .
E .

150 -

100 |- |

50 g
0 10 20 30 40 50 60 70 80 90 100

number of allocated objects [x1000]

Wednesday, January 5, 2011

Results - Allocation Time (3) A

« / Ames Research Center

4 relative allocation time in version 6 independent of number of
allocating threads Relaive Alocaton i

400

T T T T T
1 thread —=—

4 order of magnitude better
for >10,000 objects

350 2 threads ——=—
3 threads
300 - 4 threads ——=—

4 nearly constant E : o
y . . . £ 200l Ver810n 5 e
Relative Allocation Time E‘

?;3 150 +
= 80 | =
3 1 thread B 1001
'_-g’ 70 1 2 threads 5 = | |
8 60 — 3 threads 0 5000 10000 15000 20000 25000 30000
2 4 threads number of allocated objects
PR Version 6 !
L) 40
=
= 30
5
= 20
3
= 10
av}
©° 0

number of allocated objects [x1000]

Wednesday, January 5, 2011

Challenges: Heap Replacement Insufficient A

) / Ames Research Center

4 allocation time was dependent on old heap implementation (required
array of address space size)

4 heap implementation was hardwired into state storage/restore and state
matching components (both crucial for model checker)

4 cxecution engine (partial order reduction) was piggybacking on
DynamicArea garbage collector

heap implementation

Area execution engine

Elementlnfo!! elemeni_s__

references ~— - [_DynamicArea | field access POR
//' ~ (prospective reachability)

direct
references

state storage/restore state matching

|Co||apsingRestorer| | FilteringSerializer |

Wednesday, January 5, 2011

Solution: Redesign /1

« / Ames Research Center

4 isolate heap implementation by means of abstract Heap interface

4 design interface so that it does not require storage allocation for whole
address range, and does not assume consecutive reference values

4+ implement per-thread clustered heap with efficient live object
enumeration and free lists

h Implementation : i
eap iImplementatio execution engine

SparseClusterArrayHea
. field access POR
interface

(de facto access log)

references

interface
references

state storage/restore state matching

StateRestorer Serializer

| MementoRestorer | | CFSerializer |

Wednesday, January 5, 2011

Solution: SparseClusterArrayHeap /1

« / Ames Research Center

4 const time get & set operations (but thread and per-thread object limit)
4+ memory efficient for sparse address space (garbage collection holes)

4 cfficient enumeration of entries

allocating thread id 1st free entry

—

segmented) BAEE01P0
reference value — I =

]
255 0o
]

trie nodes
0 \
T \‘\
T e —— " _ \\‘\
data chunks
255 0 o
[0 1 — To41] free list bitmap
< < —0
next used ®

Chunk ﬁ
‘ Elementinfo \

Wednesday, January 5, 2011

N ’

4 state storage, state matching, partial order reduction (POR) redesign =
better extensibility + significant performance improvements for larger
systems under test (less garbage collection cycles, less states)

4 new design enables efficient implementation of property specific state
matching (e.g. under-approximation for finding concurrency defects)

4 non-trivial Java Swing example (jpf-awt/src/examples/RobotManager-
threaded.jpt - complex NullPointerViolation in multithreaded graphical

user interface program):

More Heap Redesign Benefits

version time states search depth
VS 15sec 8829 587

VOgeneric 10sec 6176 508
VOconcurrency Isec 360 89

/A

Z Ames Research Center

10

Wednesday, January 5, 2011

State Optimization (1) A
7 Ames Research Center

4 second identified limiter (superfluous re-execution) was caused by
standard Thread.join():

scheduling point : lock acquisition
class Thread { gp @ .

———————————— %
- \\
public synchronized void join(..){ g
while (isAlive()){ - requires
wait(){‘ ~~~~~~~~~~~~~~ . . , :
v T scheduling point @ : signal wait
}
}
Thread t1 Thread t2
- public void run(){
t2.Join(); lenghyComputation();
e

scheduling poiht 3 : thread termination

state graph

mandatory lock acquisition causes 2x lengthyComputation
leading into same state @

-
-
-
-

t1 blocked lenghyComputation

lenghyComputation ‘

7 t1 unblocked
11

Wednesday, January 5, 2011

Results - State Optimization (2) /1

’ Ames Research Center

4 lock acquisition only required for generic (application) signal waits

4 specific signal waits (Thread.join) can be implemented inside virtual
machine - no need for loop that requires lock protection

4 depending on joined thread, savings can be significant:

S ————————————————=— System under test

application: gov/nasa/jpf/bench/AllocBench.java
arguments: 2 10000

starting 2 threads with

elapsed time:
states:

heap:
instructions:

0000 objects each allocates twice as many

objects as required due to

gc=94, free=40061 superfluous lock 1n
Thread.join()

application: dov/nasa/jpf/bench/AllocBench. java
arguments: 2\10000

starting 2 threads with 10000 objects each
================3===================================== gtatistics
elapsed time: 0:00:00

states: new=5, visited=0, backtracked=4, end=1

heap: new=20366% released=20036, max 1live=10348, gc-cycles=5
instructions: 303379

12

Wednesday, January 5, 2011

