
1

Tracd

Tracd is a lightweight standalone Trac web server. It can be used in a variety of situations, from a test or development server to a multiprocess setup

behind another web server used as a load balancer.

Pros

• Fewer dependencies: You don't need to install apache or any other web-server.

• Fast: Should be almost as fast as the mod_python version (and much faster than the CGI), even more so since version 0.12 where the HTTP/1.1

version of the protocol is enabled by default

• Automatic reloading: For development, Tracd can be used in auto_reload mode, which will automatically restart the server whenever you make a

change to the code (in Trac itself or in a plugin).

Cons

• Fewer features: Tracd implements a very simple web-server and is not as configurable or as scalable as Apache httpd.

• No native HTTPS support: sslwrap can be used instead, or stunnel -- a tutorial on how to use stunnel with tracd or Apache with mod_proxy.

Usage examples

A single project on port 8080. (http://localhost:8080/)

 $ tracd -p 8080 /path/to/project

Stricly speaking this will make your Trac accessible to everybody from your network rather than localhost only. To truly limit it use --hostname option.

 $ tracd --hostname=localhost -p 8080 /path/to/project

With more than one project. (http://localhost:8080/project1/ and http://localhost:8080/project2/)

 $ tracd -p 8080 /path/to/project1 /path/to/project2

You can't have the last portion of the path identical between the projects since Trac uses that name to keep the URLs of the different projects unique. So

if you use /project1/path/to and /project2/path/to, you will only see the second project.

An alternative way to serve multiple projects is to specify a parent directory in which each subdirectory is a Trac project, using the -e option. The

example above could be rewritten:

 $ tracd -p 8080 -e /path/to

To exit the server on Windows, be sure to use CTRL-BREAK -- using CTRL-C will leave a Python process running in the background.

Installing as a Windows Service

Option 1

To install as a Windows service, get the SRVANY utility and run:

 C:\path\to\instsrv.exe tracd C:\path\to\srvany.exe

reg add HKLM\SYSTEM\CurrentControlSet\Services\tracd\Parameters /v Application /d "\"C:\path\to\python.exe\" \"C:\path\to\python\scripts\tracd-script.py\" <your tracd parameters>"

net start tracd

DO NOT use tracd.exe. Instead register python.exe directly with tracd-script.py as a parameter. If you use tracd.exe, it will spawn the

python process without SRVANY's knowledge. This python process will survive a net stop tracd.

If you want tracd to start automatically when you boot Windows, do:

 sc config tracd start= auto

http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracModPython
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracCgi
http://www.rickk.com/sslwrap/
http://trac.edgewall.org/wiki/STunnelTracd
http://localhost:8080/
http://localhost:8080/project1/
http://localhost:8080/project2/
http://www.google.com/search?q=srvany.exe

2

The spacing here is important.

Once the service is installed, it might be simpler to run the Registry Editor rather than use the reg add command documented above. Navigate to:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\tracd\Parameters

Three (string) parameters are provided:

AppDirectory C:\Python26\

Application python.exe

AppParameters scripts\tracd-script.py -p 8080 ...

Note that, if the AppDirectory is set as above, the paths of the executable and of the script name and parameter values are relative to the directory. This

makes updating Python a little simpler because the change can be limited, here, to a single point. (This is true for the path to the .htpasswd file, as well,

despite the documentation calling out the /full/path/to/htpasswd; however, you may not wish to store that file under the Python directory.)

For Windows 7 User, srvany.exe may not be an option, so you can use WINSERV utility and run:

"C:\path\to\winserv.exe" install tracd -displayname "tracd" -start auto "C:\path\to\python.exe" c:\path\to\python\scripts\tracd-script.py <your tracd parameters>"

net start tracd

Option 2

Use WindowsServiceScript, available at Trac Hacks. Installs, removes, starts, stops, etc. your Trac service.

Using Authentication

Tracd provides support for both Basic and Digest authentication. The default is to use Digest; to use Basic authentication, replace --auth with

--basic-auth in the examples below. (You must still specify a dialogic "realm", which can be an empty string by trailing the BASICAUTH with a

comma.)

The general format for using authentication is:

 $ tracd -p port --auth="base_project_dir,password_file_path,realm" project_path

where:

base_project_dir: the base directory of the project specified as follows:

• when serving multiple projects: relative to the project_path

• when serving only a single project (-s): the name of the project directory

Don't use an absolute path here as this won't work. Note: This parameter is case-sensitive even for environments on Windows.

• password_file_path: path to the password file

• realm: the realm name (can be anything)

• project_path: path of the project

• --auth in the above means use Digest authentication, replace --auth with --basic-auth if you want to use Basic auth

Examples:

 $ tracd -p 8080 \

 --auth="project1,/path/to/passwordfile,mycompany.com" /path/to/project1

Of course, the password file can be be shared so that it is used for more than one project:

 $ tracd -p 8080 \

 --auth="project1,/path/to/passwordfile,mycompany.com" \

 --auth="project2,/path/to/passwordfile,mycompany.com" \

 /path/to/project1 /path/to/project2

http://www.google.com/search?q=winserv.exe
http://trac-hacks.org/wiki/WindowsServiceScript
http://trac-hacks.org/

3

Another way to share the password file is to specify "*" for the project name:

 $ tracd -p 8080 \

 --auth="*,/path/to/users.htdigest,mycompany.com" \

 /path/to/project1 /path/to/project2

Using a htpasswd password file

This section describes how to use tracd with Apache .htpasswd files.

To create a .htpasswd file use Apache's htpasswd command (see below for a method to create these files without using Apache):

 $ sudo htpasswd -c /path/to/env/.htpasswd username

then for additional users:

 $ sudo htpasswd /path/to/env/.htpasswd username2

Then to start tracd run something like this:

 $ tracd -p 8080 --basic-auth="projectdirname,/fullpath/environmentname/.htpasswd,realmname" /fullpath/environmentname

For example:

 $ tracd -p 8080 --basic-auth="testenv,/srv/tracenv/testenv/.htpasswd,My Test Env" /srv/tracenv/testenv

Note: You might need to pass "-m" as a parameter to htpasswd on some platforms (OpenBSD).

Using a htdigest password file

If you have Apache available, you can use the htdigest command to generate the password file. Type 'htdigest' to get some usage instructions, or read

 this page from the Apache manual to get precise instructions. You'll be prompted for a password to enter for each user that you create. For the name of

the password file, you can use whatever you like, but if you use something like users.htdigest it will remind you what the file contains. As a

suggestion, put it in your <projectname>/conf folder along with the trac.ini file.

Note that you can start tracd without the --auth argument, but if you click on the Login link you will get an error.

Generating Passwords Without Apache

If you don't have Apache available, you can use this simple Python script to generate your passwords:

from optparse import OptionParser

The md5 module is deprecated in Python 2.5

try:

 from hashlib import md5

except ImportError:

 from md5 import md5

realm = 'trac'

build the options

usage = "usage: %prog [options]"

parser = OptionParser(usage=usage)

parser.add_option("-u", "--username",action="store", dest="username", type = "string",

 help="the username for whom to generate a password")

parser.add_option("-p", "--password",action="store", dest="password", type = "string",

 help="the password to use")

parser.add_option("-r", "--realm",action="store", dest="realm", type = "string",

 help="the realm in which to create the digest")

(options, args) = parser.parse_args()

http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracStandalone#GeneratingPasswordsWithoutApache
http://httpd.apache.org/docs/2.0/programs/htdigest.html
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracIni

4

check options

if (options.username is None) or (options.password is None):

 parser.error("You must supply both the username and password")

if (options.realm is not None):

 realm = options.realm

Generate the string to enter into the htdigest file

kd = lambda x: md5(':'.join(x)).hexdigest()

print ':'.join((options.username, realm, kd([options.username, realm, options.password])))

Note: If you use the above script you must use the --auth option to tracd, not --basic-auth, and you must set the realm in the --auth value to 'trac' (without

the quotes). Example usage (assuming you saved the script as trac-digest.py):

 $ python trac-digest.py -u username -p password >> c:\digest.txt

$ tracd --port 8000 --auth=proj_name,c:\digest.txt,trac c:\path\to\proj_name

Note: If you would like to use --basic-auth you need to use htpasswd tool from apache server to generate .htpasswd file. The remaining part is similar but

make sure to use empty realm (i.e. coma after path). Make sure to use -m option for it. If you do not have Apache, htpasswd.py may help. (Note that it

requires a crypt or fcrypt module; see the source comments for details.)

It is possible to use md5sum utility to generate digest-password file using such method:

 $ printf "${user}:trac:${password}" | md5sum - >>user.htdigest

and manually delete " -" from the end and add "${user}:trac:" to the start of line from 'to-file'.

Reference

Here's the online help, as a reminder (tracd --help):

Usage: tracd [options] [projenv] ...

Options:

 --version show program's version number and exit

 -h, --help show this help message and exit

 -a DIGESTAUTH, --auth=DIGESTAUTH

 [projectdir],[htdigest_file],[realm]

 --basic-auth=BASICAUTH

 [projectdir],[htpasswd_file],[realm]

 -p PORT, --port=PORT the port number to bind to

 -b HOSTNAME, --hostname=HOSTNAME

 the host name or IP address to bind to

 --protocol=PROTOCOL http|scgi|ajp

 -q, --unquote unquote PATH_INFO (may be needed when using ajp)

 --http10 use HTTP/1.0 protocol version (default)

 --http11 use HTTP/1.1 protocol version instead of HTTP/1.0

 -e PARENTDIR, --env-parent-dir=PARENTDIR

 parent directory of the project environments

 --base-path=BASE_PATH

 the initial portion of the request URL's "path"

 -r, --auto-reload restart automatically when sources are modified

 -s, --single-env only serve a single project without the project list

Tips

Serving static content

If tracd is the only web server used for the project, it can also be used to distribute static content (tarballs, Doxygen documentation, etc.)

This static content should be put in the $TRAC_ENV/htdocs folder, and is accessed by URLs like <project_URL>/chrome/site/....

http://trac.edgewall.org/intertrac/source%3A/tags/trac-0.11/contrib/htpasswd.py

5

Example: given a $TRAC_ENV/htdocs/software-0.1.tar.gz file, the corresponding relative URL would be

/<project_name>/chrome/site/software-0.1.tar.gz, which in turn can be written as htdocs:software-0.1.tar.gz (TracLinks syntax)

or [/<project_name>/chrome/site/software-0.1.tar.gz] (relative link syntax).

Support for htdocs: TracLinks syntax was added in version 0.10

Using tracd behind a proxy

In some situations when you choose to use tracd behind Apache or another web server.

In this situation, you might experience issues with redirects, like being redirected to URLs with the wrong host or protocol. In this case (and only in this

case), setting the [trac] use_base_url_for_redirect to true can help, as this will force Trac to use the value of [trac] base_url for doing

the redirects.

If you're using the AJP protocol to connect with tracd (which is possible if you have flup installed), then you might experience problems with double

quoting. Consider adding the --unquote parameter.

See also TracOnWindowsIisAjp, TracNginxRecipe.

Serving a different base path than /

Tracd supports serving projects with different base urls than /<project>. The parameter name to change this is

 $ tracd --base-path=/some/path

See also: TracInstall, TracCgi, TracModPython, TracGuide, Running tracd.exe as a Windows service

http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracLinks
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracLinks
http://trac.edgewall.org/intertrac/TracOnWindowsIisAjp
http://trac.edgewall.org/intertrac/TracNginxRecipe
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracInstall
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracCgi
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracModPython
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TracGuide
http://trac.edgewall.org/intertrac/TracOnWindowsStandalone%23RunningTracdasservice

	Tracd
	Pros
	Cons
	Usage examples
	Installing as a Windows Service
	Option 1
	Option 2

	Using Authentication
	Using a htpasswd password file
	Using a htdigest password file
	Generating Passwords Without Apache

	Reference
	Tips
	Serving static content
	Using tracd behind a proxy
	Serving a different base path than /

