
Wikiprint Book

Title: ChoiceGenerators

Subject: Java Path Finder - devel/choicegenerator

Version: 10

Date: 02/18/13 00:33:20

2

Table of Contents

TracNav 3

Introduction... 3

Installing JPF... 3

User Guide... 3

Developer Guide 3

MJI... 3

Projects... 3

About... 3

ChoiceGenerators 3

Motivation 3

The JPF Perspective 5

How it comes to Life 5

Cascaded ChoiceGenerators 8

3

TracNav

• JPFWiki - Welcome Page

Introduction...

Installing JPF...

User Guide...

Developer Guide

• Design

• Choice Generator

• Partial Order Reduction

• Attributes

• Listener

MJI...

• Bytecode Factory

• Logging

• Report

• Embedded

• JPF tests

• JPF project layout

• Create a JPF project

• Coding Conventions

• Hosting update site

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

ChoiceGenerators

Software model checking is all about doing the right choices, to reach the interesting system states within the resource constraints of the tool and

execution environment. We refer to the mechanism used by JPF to systematically explore the state space as ChoiceGenerators.

ChoiceGenerators can be approached from an application perspective, or from the JPF implementation perspective. We will do both.

Motivation

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/design
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/choicegenerator
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/partial_order_reduction
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/attributes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/listener
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/mji
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/bytecode_factory
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/loggin
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/report
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/embedded
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/jpf_tests
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/modules
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/create_project
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/coding_conventions
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/eclipse_plugin_update
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC

4

While most of the choices during JPF application are related to thread scheduling, the example that obviously justifies our implementation approach is

from the non-deterministic data acquisition branch. Support for "random" data acquisition (using the gov.nasa.jpf.jvm.Verify interface) has been in JPF

since a long time

...

boolean b = Verify.getBoolean(); // evaluated by JPF for both 'true' and 'false'

...

This worked nicely for small sets of choice values (like {true,false} for boolean), but the mechanism for enumerating all choices from a type specific

interval becomes already questionable for large intervals (e.g. Verify.getInt(0,10000)), and fails completely if the data type does not allow finite choice

sets at all (like floating point types):

Figure: ChoiceGenerator Motivation

To handle this case, we have to leave the ideal world of model checking (that considers all possible choices), and make use of what we know about the

real world - we have to use heuristics to make the set of choices finite and manageable. However, heuristics are application and domain specific, and it

would be a bad idea to hardcode them into the test drivers we give JPF to analyze. This leads to a number of requirements for the JPF choice

mechanism:

• choice mechanisms have to be decoupled (i.e. thread choices should be indpendent of data choices, double choices from int choices etc.)

• choice sets and enumeration should be encapsulated in dedicated, type specific objects. The VM should only know about the most basic types, and

otherwise use a generic interface to obtain choices

• selection of classes representing (domain specific) heuristics, and parametrization of ChoiceGenerator instances should be possible at runtime, i.e.

via JPF's configuration mechanism (properties)

The diagram shown above depicts this with an example that uses a "randomly" chosen velocity value of type double. As an example heuristic we use a

threshold model, i.e. we want to know how the system reacts below, at, and above a certain application specific value (threshold). We reduce an infinite

set of choices to only three "interesting" ones. Of course, "interesting" is quite subjective, and we probably want to play with the values (delta, threshold,

or even used heuristic) efficiently, without having to rebuild the application each time we run JPF.

The code example does not mention the used ChoiceGenerator class (DoubleThresholdGenerator) at all, it just specifies a symbolic name "velocity",

which JPF uses to look up an associated class name from its configuration data (initialized via property files or the command line - see Configuring JPF

Runtime Options). But it doesn't stop there. Most heuristics need further parameterization (e.g. threshold, delta), and we provide that by passing the JPF

configuration data into the ChoiceGenerator constructors (e.g. the 'velocity.threshold' property). Each ChoiceGenerator instance knows its symbolic

name (e.g. "velocity"), and can use this name to look up whatever parameters it needs.

5

The JPF Perspective

Having such a mechanism is nice to avoid test driver modification. But it would be much nicer to consistently use the same mechanism not just for data

acquisition choices, but also scheduling choices (i.e. functionality that is not controlled by the test application). JPF's ChoiceGenerator mechanism does

just this, but in order to understand it from an implementation perspective we have to take one step back and look at some JPF terminology:

Figure: States, Transitions and Choices

State is a snapshot of the current execution status of the application (mostly thread and heap states), plus the execution history (path) that lead to this

state. Every state has a unique id number. JPF-internally, State is encapsulated in the SystemState instance (almost, there is some execution history

which is just kept by the JVM object). This includes three components:

• KernelState - the application snapshot (threads, heap)

• trail - the last Transition (execution history)

• current and next ChoiceGenerator - the objects encapsulating the choice enumeration that produces different transitions (but not necessarily new

states)

Transition is the sequence of instructions that leads from one state to the next. There is no context switch within a transition, it's all in the same thread.

There can be multiple transitions leading out of one state (but not necessarily to a new state).

Choice is what starts a new transition. This can be a different thread (i.e. scheduling choice), or different "random" data value.

In other words, possible existence of Choices is what terminates the last Transition, and selection of a Choice value precludes the next Transition. The

first condition corresponds to creating a new ChoiceGenerator, and letting the SystemState know about it. The second condition means to query the next

choice value from this ChoiceGenerator (either internally within the JVM, or in an instruction or native method).

How it comes to Life

With this terminology, we are ready to have a look at how it all works. Let's assume we are in a Transition that executes a get_field bytecode instruction

(remember, JPF executes Java bytecode), and the corresponding object that owns this field is shared between threads. For simplicity's sake, let's further

assume there is no synchronization when accessing this object, (or we have turned vm.sync_detection off). Let's also assume there are other runnable

threads at this point. Then we have a choice - the outcome of the execution might depend on the order in which we schedule threads, and hence access

this field. There might be a data race.

6

Figure: ChoiceGenerator Sequence

Consequently, when JPF executes this get_field instruction, the gov.nasa.jpf.jvm.bytecode.GET_FIELD.execute() method does three things:

1. create a new ChoiceGenerator (ThreadChoiceGenerator in this case), that has all runnable threads at this point as possible choices

2. registers this ChoiceGenerator via calling SystemState.setNextChoiceGenerator()

3. schedules itself for reexecution (just returns itself as the next instruction to execute within the currently running thread)

At this point, JPF ends this Transition (which is basically a loop inside ThreadInfo.executeStep()), stores a snapshot of the current State, and then starts

the next Transition (let's ignore the Search and possible backtracks for a moment). The ChoiceGenerator created and registered at the end of the

previous Transition becomes the new current ChoiceGenerator. Every State has exactly one current ChoiceGenerator object that is associated with it,

and every Transition has exactly one choice value of this ChoiceGenerator that kicks it off. Every Transition ends in an Instruction that produces the next

ChoiceGenerator.

The new Transition is started by the SystemState by setting the previously registered ChoiceGenerator as the current one, and calling its

ChoiceGenerator.advance() method to position it on its next choice. Then the SystemState checks if the current ChoiceGenerator is a SchedulingPoint

(just a ThreadChoiceGenerator that is meant to be used for scheduling purposes), and if it is, gets the next thread to execute from it (i.e. the SystemState

itself consumes the choice). Then it starts the next Transition by calling ThreadInfo.executeStep() on it.

The ThreadInfo.executeStep() basically loops until an Instruction.execute() returns itself, i.e. has scheduled itself for reexecution with a new

ChoiceGenerator. When a subsequent ThreadInfo.executeStep() reexecutes this instruction (e.g. GET_FIELD.execute()), the instruction notices that it is

the first instruction in a new Transition, and hence does not have to create a ChoiceGenerator but proceeds with it's normal operations.

If there is no next instruction, or the Search determins that the state has been seen before, the VM backtracks. The SystemState is restored to the old

state, and checks for not-yet-explored choices of its associated ChoiceGenerator by calling ChoiceGenerator.hasMoreChoices(). If there are more

choices, it positions the ChoiceGenerator on the next one by calling ChoiceGenerator.advance(). If all choices have been processed, the system

backtracks again (until it's first ChoiceGenerator is done, at which point we terminate the search).

7

Figure: ChoiceGenerator Implementation

The methods that create ChoiceGenerators have a particular structure, dividing their bodies into two parts:

1. top half - (potentially) creates and registers a new ChoiceGenerator. This marks the end of a transition

2. bottom half - which does the real work, and might depend on acquiring a new choice value. This is executed at the beginning of the next transition

To determine which branch you are in, you can call ThreadInfo.isFirstStepInsn(). This will return true if the currently executed instruction is

the first one in the transition, which corresponds to the bottom half mentioned above.

The only difference between scheduling choices and data acqusition choices is that the first ones are handled internally by the JVM (more specifically:

used by the SystemState to determine the next thread to execute), and the data acqusition is handled in the bottom half of an

Instruction.execute(), native method, or listener callback method (in which case it has to acquire the current ChoiceGenerator from the

SystemState, and then explicitly call ChoiceGenerator.getNextChoice() to obtain the choice value). For a real example, look at the

JPF.gov_nasa_jpf_jvm_Verify.getBoolean() implementation.

As an implementation detail, creation of scheduling points are delegated to a SchedulerFactory instance, which encapsulates a scheduling policy by

providing a consistent set of ThreadChoiceGenerators for the fixed number of instructions that are scheduling relevant (monitor_enter, synchronized

method calls, Object.wait() etc.). Clients of this SchedulerFactory therefore have to be aware of that the policy object might not return a new

ChoiceGenerator, in which case the client directly proceeds with the bottom half execution, and does not break the current transition.

The standard classes and interfaces for the ChoiceGenerator mechanism can be found in package gov.nasa.jpf.jvm, and include:

• ChoiceGenerator

• BooleanChoiceGenerator

• IntChoiceGenerator

• DoublechoiceGenerator

• ThreadChoiceGenerator

8

• SchedulingPoint

• SchedulerFactory

• DefaultSchedulerFactory

Concrete implementations can be found in package gov.nasa.jpf.jvm.choice, and include classes like:

• IntIntervalGenerator

• IntChoiceFromSet

• DoubleChoiceFromSet

• DoubleThresholdGenerator

• SchedulingChoiceFromSet

As the number of useful generic heuristics increases, we expect this package to be expanded.

Cascaded ChoiceGenerators

There can be more than one ChoiceGenerator object associated with a transition, which we call cascaded ChoiceGenerators = giving us a set of

choice combinations for such transitions.

For example, assume that we want to create a listener that perturbs certain field values, i.e. it replaces the result operand that is pushed by a getfield

instruction. This is easy to do from a listener, but the VM (more specifically our on-the-fly partial order reduction) might already create a

ThreadChoiceGenerator (scheduling point) for this getfield if it refers to a shared object, and the instruction might cause a data race. Without

cascaded ChoiceGenerators we could only have the perturbation listener or the race detection, but not both. This is clearly a limitation we want to

overcome, since you might not even know when JPF - or some of the other listeners or bytecode_factories - create ChoiceGenerators that would

collide with the ones you want to create in your listener.

Using cascaded ChoiceGenerators requires little more than what we have already seen above. It only involves changes to two steps:

(1) ChoiceGenerator creation - you need to identify ChoiceGenerators with a String id. We can't use the type of the ChoiceGenerator - or it's

associated choice type - to identify a particular instance, since different listeners might use different ChoiceGenerator instances of same types for

different purposes. Resolving through unique types would throw us back to where we would have to know about all the other ChoiceGenerators

created by all the other JPF components. We can't use the associated instruction either, because the whole point is that we can have more than one

ChoiceGenerator for each of them. So we have to give our ChoiceGenerator instances names when we create them, as in

...

IntChoiceFromSet cg = new IntChoiceFromSet("fieldPerturbator", 42, 43);

The name should be reasonably unique, describing the context in which this choice is used. Don't go with "generic" names like "myChoice". In case of

doubt, use the method name that creates the ChoiceGenerator. The reason why we need the id in the first place is that we later-on want to be able to

retrieve a specific instance. Which brings us to:

(2) ChoiceGenerator retrieval - at some point we want to process the choice (usually within the bottom half of the method that created the

ChoiceGenerator), so we need to tell JPF all we know about the ChoiceGenerator instance, namely id and type. The simple

SystemState.getChoiceGenerator() we used above will only give us the last registered one, which might or might not be the one we registered

ourselves. Retrieval is done with a new method SystemState.getCurrentChoiceGenerator(id,cgType), which in the above case would look

like:

...

IntChoiceFromSet cg = systemState.getCurrentChoiceGenerator("fieldPerturbator", IntChoiceFromSet.class);

assert cg != null : "required IntChoiceGenerator not found";

...

This method returns null if there is no ChoiceGenerator of the specified id and type associated with the currently executed instruction. If this is the

bottom half of a method that created the instance, this is most likely an error condition that should be checked with an assertion. If the retrieval is in

another method, existence of such a ChoiceGenerator instance could be optional and you therefore have it checked in an `if (cg != null) {..}'

expression.

This is all there is to it in case you don't refer to a particular execution state of an instruction. As an example, assume that you want to add some int

choices on top of each Verify.getInt(..) call. Your listener would look like this:

http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/partial_order_reduction
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/listener
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/bytecode_factory

9

 public void instructionExecuted(JVM vm) {

 Instruction insn = vm.getLastInstruction();

 ThreadInfo ti = vm.getLastThreadInfo();

 SystemState ss = vm.getSystemState();

 if (insn instanceof EXECUTENATIVE) { // break on method call

 EXECUTENATIVE exec = (EXECUTENATIVE) insn;

 if (exec.getExecutedMethodName().equals("getInt")){ // Verify.getInt(..) - this insn did create a CG on its own

 if (!ti.isFirstStepInsn()){ // top half - first execution

 IntIntervalGenerator cg = new IntIntervalGenerator("instrumentVerifyGetInt", 3,4);

 ss.setNextChoiceGenerator(cg);

 ...

 } else { // bottom half - reexecution at the beginning of the next transition

 IntIntervalGenerator cg = ss.getCurrentChoiceGenerator("instrumentVerifyGetInt", IntIntervalGenerator.class);

 assert cg != null : "no 'instrumentVerifyGetInt' IntIntervalGenerator found";

 int myChoice = cg.getNextChoice();

 ... // process choice

 }

 }

 }

 }

Sometimes life isn't that easy. Sometimes what you do with your choice depends on the execution state of the instruction this ChoiceGenerator was

created for, and you have to be aware of that the instruction might get re-executed (e.g. after processing the top half of another ChoiceGenerator creating

method) before it has done what you depend on for your local choice processing. Let's get back to our previous example of the field perturbation. Simply

speaking, all we want to do in our listener is just swap operand stack values after a certain getfield. However, the partial order reduction of the VM

might get in our way because it reschedules the instruction before it pushes the value if execution of this instruction might constitute a data race, and

therefore required creation of a ThreadChoiceGenerator instance. What is worse is that the VM might do this conditionally - if there is only one

runnable thread, there is no need for a scheduling point since there can't be a data race. Our own perturbator listener has to account for all that. Luckily,

we can use SystemState.getCurrentChoiceGenerator(id,type) to unify all these cases, and we just have to restore execution state in case

we want to re-execute the instruction ourselves. Here is the example:

 public void instructionExecuted(JVM vm) {

 Instruction insn = vm.getLastInstruction();

 ThreadInfo ti = vm.getLastThreadInfo();

 SystemState ss = vm.getSystemState();

 if (insn instanceof GETFIELD){

 GETFIELD getInsn = (GETFIELD) insn;

 FieldInfo fi = getInsn.getFieldInfo();

 if (fi.getName().equals(perturbedFieldName)){

 IntChoiceFromSet cg = ss.getCurrentChoiceGenerator("fieldReplace", IntChoiceFromSet.class);

 if (cg == null){

 // we might get here after a preceeding rescheduling exec, i.e.

 // partial execution (with successive re-execution), or after

 // non-rescheduling exec has been completed (only one runnable thread).

 // In the first case we have to restore the operand stack so that

 // we can reexecute

 if (!ti.willReExecuteInstruction()){

 // restore old operand stack contents

 ti.pop();

 ti.push(getInsn.getLastThis());

 }

 cg = new IntChoiceFromSet("fieldReplace", 42, 43);

 ss.setNextChoiceGenerator(cg);

 ti.reExecuteInstruction();

10

 } else {

 int v = cg.getNextChoice();

 int n = ti.pop();

 ti.push(v);

 }

 }

 }

 }

These examples show you that at the beginning of each transition, there is a choice value for all the cascaded ChoiceGenerators associated with it. If

you would add choiceGeneratorAdvanced() notifications to your listener, you would also see that JPF processes all related choice combinations.

If you really want to see the context, there are a number of additional methods in SystemState that might help you:

• getChoiceGenerator() - returns only the last registered one

• getChoiceGenerators() - returns an array of all ChoiceGenerators in the current execution path

• getLastChoiceGeneratorOfType(cgType) - returns the last registered ChoiceGenerator in the path that is of the specified type

• getCurrentChoiceGenerators() - returns array of all cascaded ChoiceGenerators associated with the current transition

• getCurrentChoiceGenerator(id) - returns last registered ChoiceGenerator of cascade with specified id

• getCurrentChoiceGenerator(id,cgType) - our workhorse: last registered ChoiceGenerator of cascade with specified id and cgType

(which can be a supertype of the actual one)

• ... and more

How does the system detect if a ChoiceGenerator is cascaded or not? Very simple - within SystemState.setNextChoiceGenerator(cg), we

just check if SystemState already had a registered next ChoiceGenerator, and in case it does we just set a cascaded attribute for this one. Other

than that, we just maintain normal linear ChoiceGenerator linkage, which is accessible through

ChoiceGenerator.getPreviousChoiceGenerator(). If you want to iterate through a cascade yourself, use the

ChoiceGenerator.getCascadedParent() method, which returns null if there is none. Just be aware of that the last registered

ChoiceGenerator (i.e. what SystemState.getChoiceGenerator() returns) does not have the cascaded attribute set (i.e.

ChoiceGenerator.isCascaded() returns false).

	TracNav
	TracNav
	Introduction...
	Introduction...
	Installing JPF...
	User Guide...
	Developer Guide
	MJI...
	Projects...
	About...

	ChoiceGenerators
	Motivation
	The JPF Perspective
	How it comes to Life
	Cascaded ChoiceGenerators

