
1

TracNav

• JPFWiki - Welcome Page

Introduction...

Installing JPF...

User Guide...

Developer Guide

• Design

• Choice Generator

• Partial Order Reduction

• Attributes

• Listener

MJI...

• Bytecode Factory

• Logging

• Report

• Embedded

• JPF tests

• JPF project layout

• Create a JPF project

• Coding Conventions

• Hosting update site

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

JPF Toplevel Design

JPF was designed around two major abstractions: (1) the JVM, and (2) the Search object.

Virtual Machine (JVM)

The JVM is the Java specific state generator. By executing Java bytecode instructions, the JVM generates state representations that can be

• checked for equality (has a state been visited before)

• queried (thread states, data values etc.)

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/design
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/choicegenerator
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/partial_order_reduction
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/attributes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/listener
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/mji
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/bytecode_factory
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/loggin
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/report
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/embedded
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/jpf_tests
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/modules
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/create_project
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/coding_conventions
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/eclipse_plugin_update
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC


2

• stored

• restored

The main JVM parameterizations are classes that implement the state management (matching, storing, backtracking). Most of the execution scheme is

delegated to the SystemState, which in turn uses a SchedulerFactory (a factory object for ThreadChoiceGenerators) to generate scheduling sequences

of interest.

There are three major JVM methods in the context of the VM-Search collaboration

• forward - generate the next state, report if the generated state has a successor. If yes, store on a backtrack stack for efficient restoration.

• backtrack - restore the last state on the backtrack stack

• restoreState - restore an arbitrary state (not necessarily on the backtrack stack)

Figure:JPF toplevel design

Search Strategy

object is responsible for selecting the state from which the JVM should proceed, either by directing the JVM to generate the next state (forward), or by

telling it to backtrack to a previously generated one. Search objects can be thought of as drivers for JVM objects.

Search objects also configure and evaluate property objects (e.g. NotDeadlockedProperty, NoAssertionsViolatedProperty). The main Search

implementations include a simple depth-first search (DFSearch), and a priority-queue based search that can be parameterized to do various search types

based on selecting the most interesting state out of the collection of all successors of a given state (HeuristicSearch). A Search implementation mainly

provides a single search method, which includes the main loop that iterates through the relevant state space until it has been completely explored, or the

search found a property violation.



3

Package Structure

The JPF core is partitioned into the following packages:

gov.nasa.jpf

The main responsibility of this package is configuration and instantiation of the core JPF objects, namely the Search and JVM. The configuration itself is

delegated to the Config class, which contains various methods to create objects or read values from a hierarchy of property files and command line

options (see Configuring JPF Runtime Options). Beyond the configuration, the JPF object has little own functionality. It is mainly a convenience construct

to start JPF from inside any Java application without having to bother with its complex configuration.

gov.nasa.jpf.jvm

This package constitutes the main body of the core code, including the various constructs that implement the Java state generator. Conceptually, the

major class is JVM, but again this class delegates most of the work to a set of second level classes that together implement the major functionality of

JPF. These classes can be roughly divided into three categories:

(1) class management - which starts with ClassInfo, but also contains the mostly execution state invariant information about fields and methods (FieldInfo

and MethodInfo)

(2) object model - all object data in JPF is stored as integer arrays encapsulated by Fields objects. The execution specific lock state of objects is captured

in Monitor instances. Fields and Monitor instances together form the objects, which are stored as ElementInfos. The heap (which is an Area instance) is

just a dynamic array of ElementInfo objects, the array indices being used as object reference values

(3) bytecode execution - this is mostly a collaboration of SystemState and ThreadInfo, with some delegation to policy objects implementing the Partial

Order Reduction. It starts with the JVM object calling SystemState.nextSuccessor(), which descends into ThreadInfo.executeStep() (together, these two

methods encalsupate the on-the-fly POR), which in turn calls ThreadInfo.executeInstruction() to perform the bytecode execution. The actual execution is

again delegated to bytecode specific Instruction instances that per default reside in a sub-package gov.nasa.jpf.jvm.bytecode (the set of bytecode

classes to use can be configuredd via a InstructionFactory class)

gov.nasa.jpf.search

This package is relatively small and mainly contains the Search class, which is an abstract base for search policies. The major method that encapsulates

the policy is Search.search(), which is the JVM driver (that calls forward(), backtrack() and restore()). This package also contains the plain-vanilla

depth-first search policy DFSearch. More interesting policies can be found in the sub-package gov.nasa.jpf.search.heuristic, which uses a

HeuristicSearch class in conjunction with confgurable Heuristic objects to prioritize a queue of potential successor states.


	TracNav
	TracNav
	Introduction...
	Introduction...
	Installing JPF...
	User Guide...
	Developer Guide
	MJI...
	Projects...
	About...



	JPF Toplevel Design
	Virtual Machine (JVM)
	Search Strategy
	Package Structure
	gov.nasa.jpf
	gov.nasa.jpf.jvm
	gov.nasa.jpf.search



