
1

Writing JPF Tests

TracNav

• JPFWiki - Welcome Page

Introduction...

Installing JPF...

User Guide...

Developer Guide

• Design

• Choice Generator

• Partial Order Reduction

• Attributes

• Listener

MJI...

• Bytecode Factory

• Logging

• Report

• Embedded

• JPF tests

• JPF project layout

• Create a JPF project

• Coding Conventions

• Hosting update site

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

As a complex runtime system for (almost) arbitrary Java programs, it goes without saying that JPF needs a lot of regression tests. You can find these

under the src/tests directories in (hopefully) all JPF projects. All tests follow the same scheme, which is motivated by the need to run tests in a

number of different ways:

1. as part of the Ant-based build system, i.e. from build.xml

2. as explicitly invoked JUnit tests

3. by directly running JPF on the test application (i.e. without JUnit, either as a JPF shell or via RunTest.jar)

4. by running the test application on a normal JVM

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/design
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/choicegenerator
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/partial_order_reduction
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/attributes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/listener
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/mji
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/bytecode_factory
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/loggin
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/report
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/embedded
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/jpf_tests
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/modules
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/create_project
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/coding_conventions
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/eclipse_plugin_update
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC

2

The rationale for this is to support various levels of inspection and debugging.

Each test conceptually consists of a test driver (e.g. executed under JUnit) which starts JPF from within its @Test annotated methods, and a class that

is executed by JPF in order to check the verification goals. For convenience reasons, jpf-core provides infrastructure that enables you to implement both

parts in the same class. This can be confusing at first - the test class is used to start JPF on itself.

The main() method of TestJPF derived classes always look the same and can be safely copied between tests:

public static void main(String[] testMethods){

 runTestsOfThisClass(testMethods);

}

This method serves two purposes. First, it is used to start the test outside JUnit, either on all @Test annotated instance methods, or just on the ones

which names are provided as arguments. Second, it serves as the entry point for JPF when it executes the class. In this case, TestJPF takes care of

invoking JPF on the test class and providing the name of the test method this was executed from.

Other than that, test classes just consist of (almost) normal @Test annotated JUnit test methods, which all share the same structure

import org.junit.Test;

@Test public void testX () {

 if (verifyNoPropertyViolation(JPF_ARGS){

 .. code to verify by JPF

 }

}

The trick is the call to verifyNoPropertyViolation(), or any of the other verifyXX() methods of TestJPF. If executed by the host VM, i.e. from

JUnit, it starts JPF on the same class and the containing method, and returns false. This means the corresponding if block is not executed by the

host VM.

When JPF is invoked, the argument to the main() method is set to the method name from which JPF got invoked, which causes

runTestsOfThisMethod() to execute exactly this method again, but this time under JPF. Instead of re-executing the same TestJPF.verifyX()

method again (and becoming infinitely recursive), we use a native peer JPF_gov_nasa_jpf_util_test_TestJPF which intercepts the verifyX()

call and simply returns true, i.e. this time only the if block gets executed.

The rest of the host VM executed TestJPF.verifyX() checks the results of the JPF run, and accordingly throws an AssertionError in case it

does not correspond to the expected result. The most common goals are

• verifyNoPropertyViolation - JPF is not supposed to find an error

3

• verifyPropertyViolation - JPF is supposed to find the specified property violation

• verifyUnhandledException - JPF is supposed to detect an unhandled excecption of the specified type

• verifyAssertionError - same for AssertionErrors

• verifyDeadlock - JPF is supposed to find a deadlock

Each of these methods actually delegate running JPF to a corresponding method whose name does not start with 'verify..'. These workhorse methods

expect explicit specification of the JPF arguments (indluding SUT main class name and method names), but they return JPF objects, and therefore can

be used for more sophisticated JPF inspection (e.g. to find out about the number of states).

TestJPF also provides some convenience methods that can be used within test methods to find out which environment the code is executed from:

• isJPFRun() - returns true if the code is executed under JPF

• isJUnitRun() - returns true if the code is executed under JUnit by the host VM

• isRunTestRun() - returns true if the code is executed by RunTest.jar

Here is an example of a typical test method that uses some of these features:

 @Test public void testIntFieldPerturbation() {

 if (!isJPFRun()){ // run this outside of JPF

 Verify.resetCounter(0);

 }

 if (verifyNoPropertyViolation("+listener=.listener.Perturbator",

 "+perturb.fields=data",

 "+perturb.data.class=.perturb.IntOverUnder",...

 "+perturb.data.delta=1")){

 // run this under JPF

 System.out.println("instance field perturbation test");

 int d = data; // this should be perturbated

 System.out.println("d = " + d);

 Verify.incrementCounter(0);

 } else { // run this outside of JPF

 assert Verify.getCounter(0) == 3;

 }

 }

Running JPF tests from command line

To run JPF tests from the command line, use the RunTest.jar either from jpf-core/build, or the one that is distributed with your project

containing the tests (tools/RunTest.jar for JPF projects). This is an executable jar that expects the test class and (optional) method test names as

arguments. If no method names are provided, all @Test annotated methods are executed. Most projects have a convenience script bin/test to

execute RunTest.jar.

> bin/test gov.nasa.jpf.test.mc.data.PerturbatorTest testIntFieldPerturbation

... testing testIntFieldPerturbation

 running jpf with args: +listener=.listener.Perturbator +perturb.fields=data +perturb.data.class=.perturb.IntOverUnder +perturb.data.field=gov.nasa.jpf.test.mc.data.PerturbatorTest.data +perturb.data.delta=1 gov.nasa.jpf.test.mc.data.PerturbatorTest testIntFieldPerturbation

JavaPathfinder v5.x - (C) RIACS/NASA Ames Research Center

== system under test

application: gov/nasa/jpf/test/mc/data/PerturbatorTest.java

arguments: testIntFieldPerturbation

== search started: 9/10/10 7:03 PM

instance field perturbation test

4

d = 43

d = 42

...

== search finished: 9/10/10 7:03 PM

... testIntFieldPerturbation: Ok

... execution of testsuite: gov.nasa.jpf.test.mc.data.PerturbatorTest SUCCEEDED

.... [1] testIntFieldPerturbation: Ok

... tests: 1, failures: 0, errors: 0

Running JPF tests under JUnit

This is the preferred way to execute JPF regression tests, which is usually done from an Ant build.xml script containing a standard target such as

 ...

 <target name="test" depends="build" description="run core regression tests" if="have_tests">

 ...

 <junit printsummary="on" showoutput="off" haltonfailure="yes"

 fork="yes" forkmode="perTest" maxmemory="1024m" outputtoformatters="true">

 <classpath>

 <path refid="lib.path"/>

 <pathelement location="build/tests"/>

 ...

 </classpath>

 <batchtest todir="build/tests">

 <fileset dir="build/tests">

 <exclude name="**/JPF_*.class"/>

 <include name="**/*Test.class"/>

 </fileset>

 </batchtest>

 </junit>

 </target>

Most JPF projects have build.xml files you can use as examples.

Please note this means that you should not have any inner classes, interfaces, annotation types etc. that end with *Test since JUnit would interpret these

as test cases and most likely complain about missing constructors and main() methods.

Debugging tests

Typically, JPF tests are only executed from within an IDE if they fail and need to be debugged.

Under NetBeans, this can be done by selecting the test class, and then executing the Debug File command from the context menu. This will pop up a

dialog that lets you enter a specific test method to debug. This method requires a properly set up ide-file-target.xml, which comes with most JPF

projects.

Under Eclipse, you can select the test class and then execute Debug As.. -> Java Application.

	Writing JPF Tests
	TracNav
	Introduction...
	Introduction...
	Installing JPF...
	User Guide...
	Developer Guide
	MJI...
	Projects...
	About...

	Running JPF tests from command line
	Running JPF tests under JUnit
	Debugging tests

