
Wikiprint Book

Title: Writing JPF Tests

Subject: Java Path Finder - devel/jpf_tests

Version: 12

Date: 03/15/2013 05:06:35 PM

2

Table of Contents

Writing JPF Tests 3

TracNav 3

Introduction... 3

Installing JPF... 3

User Guide... 3

Developer Guide 3

MJI... 3

Projects... 3

About... 3

3

Writing JPF Tests

TracNav

• JPFWiki - Welcome Page

Introduction...

Installing JPF...

User Guide...

Developer Guide

• Design

• Choice Generator

• Partial Order Reduction

• Attributes

• Listener

MJI...

• Bytecode Factory

• Logging

• Report

• Embedded

• JPF tests

• JPF project layout

• Create a JPF project

• Coding Conventions

• Hosting update site

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

As a complex runtime system for (almost) arbitrary Java programs, it goes without saying that JPF needs a lot of regression tests. You can find these

under the src/tests directories in (hopefully) all JPF projects. All tests follow the same scheme, which is motivated by the need to run tests in a

number of different ways:

1. as part of the Ant-based build system, i.e. from build.xml

2. as explicitly invoked JUnit tests

3. by directly running JPF on the test application (i.e. without JUnit, either as a JPF shell or via RunTest.jar)

4. by running the test application on a normal JVM

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/design
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/choicegenerator
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/partial_order_reduction
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/attributes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/listener
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/mji
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/bytecode_factory
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/loggin
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/report
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/embedded
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/jpf_tests
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/modules
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/create_project
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/coding_conventions
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/eclipse_plugin_update
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC

4

The rationale for this is to support various levels of inspection and debugging.

Each test conceptually consists of a test driver (e.g. executed under JUnit) which starts JPF from within its @Test annotated methods, and a class that

is executed by JPF in order to check the verification goals. For convenience reasons, jpf-core provides infrastructure that enables you to implement both

parts in the same class. This can be confusing at first - the test class is used to start JPF on itself.

The main() method of TestJPF derived classes always look the same and can be safely copied between tests:

public static void main(String[] testMethods){

 runTestsOfThisClass(testMethods);

}

This method serves two purposes. First, it is used to start the test outside JUnit, either on all @Test annotated instance methods, or just on the ones

which names are provided as arguments. Second, it serves as the entry point for JPF when it executes the class. In this case, TestJPF takes care of

invoking JPF on the test class and providing the name of the test method this was executed from.

Other than that, test classes just consist of (almost) normal @Test annotated JUnit test methods, which all share the same structure

import org.junit.Test;

@Test public void testX () {

 if (verifyNoPropertyViolation(JPF_ARGS){

 .. code to verify by JPF

 }

}

The trick is the call to verifyNoPropertyViolation(), or any of the other verifyXX() methods of TestJPF. If executed by the host VM, i.e. from

JUnit, it starts JPF on the same class and the containing method, and returns false. This means the corresponding if block is not executed by the

host VM.

When JPF is invoked, the argument to the main() method is set to the method name from which JPF got invoked, which causes

runTestsOfThisMethod() to execute exactly this method again, but this time under JPF. Instead of re-executing the same TestJPF.verifyX()

method again (and becoming infinitely recursive), we use a native peer JPF_gov_nasa_jpf_util_test_TestJPF which intercepts the verifyX()

call and simply returns true, i.e. this time only the if block gets executed.

The rest of the host VM executed TestJPF.verifyX() checks the results of the JPF run, and accordingly throws an AssertionError in case it

does not correspond to the expected result. The most common goals are

• verifyNoPropertyViolation - JPF is not supposed to find an error

5

• verifyPropertyViolation - JPF is supposed to find the specified property violation

• verifyUnhandledException - JPF is supposed to detect an unhandled excecption of the specified type

• verifyAssertionError - same for AssertionErrors

• verifyDeadlock - JPF is supposed to find a deadlock

	Writing JPF Tests
	TracNav
	Introduction...
	Introduction...
	Installing JPF...
	User Guide...
	Developer Guide
	MJI...
	Projects...
	About...

