
1

Listeners

TracNav

• JPFWiki - Welcome Page

Introduction...

Installing JPF...

User Guide...

Developer Guide

• Design

• Choice Generator

• Partial Order Reduction

• Attributes

• Listener

MJI...

• Bytecode Factory

• Logging

• Report

• Embedded

• JPF tests

• JPF project layout

• Create a JPF project

• Coding Conventions

• Hosting update site

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

Listeners are perhaps the most important extension mechanism of JPF. They provide a way to observe, interact with and extend JPF execution with your

own classes. Since listeners are dynamically configured at runtime, they do not require any modification to the JPF core. Listeners are executed at the

same level like JPF, so there is hardly any limit of what you can do with them.

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/design
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/choicegenerator
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/partial_order_reduction
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/attributes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/listener
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/mji
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/bytecode_factory
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/loggin
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/report
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/embedded
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/jpf_tests
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/modules
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/create_project
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/coding_conventions
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/eclipse_plugin_update
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC

2

Figure: JPF Listeners

The general principle is simple: JPF provides an http://www.research.ibm.com/designpatterns/example.htm Observer pattern implementation that

notifies registered observer instances about certain events at the search- and JVM- level. These notifications cover a broad spectrum of JPF operations,

from low level events like instructionExecuted to high level events like searchFinished. Each notification is parameterized with the corresponding source

(either the Search or the JVM instance), which can be then used by the notified listener to obtain more information about the event / JPF's internal state.

Configuration is usually done with the listener property, either from the command line, or a *.jpf property file. Listeners can also be associated with

annotations, to be automatically loaded whenever JPF encounters such an annotation. Applications can use the @JPFConfig annotation to explicitly

specify JPF listeners. Lastly, if JPF is used in an embedded mode, listeners can be registered with an API.

Listener Types

There are two basic listener interfaces, depending on corresponding event sources: SearchListeners and VMListeners. Since these interfaces are quite

large, and listeners often need to implement both, we also provide "adapter" classes, i.e. implementors that contain all required method definitions with

empty method bodies. Concrete listeners that extend these adapters therefore only have to override the notification methods they are interested in.

The adapter classes are used for the majority of listener implementations, especially since they also support two other interfaces/extension mechanisms

that are often used in conjunction with Search/VMListeners: Property (to define program properties) and PublisherExtension (to produce output within the

[[user:output JPF reporting system]]).

ListenerAdapter is the bare adapter implementation for SearchListener, VMListener and PublisherExtension. This is what is mostly used to collect

information during JPF execution (e.g. CoverageAnalyzer and DeadlockAnalyzer).

PropertyListenerAdapter is used in case the listener implements a program property, i.e. can terminate the search process. A prominent example of this

category is the PreciseRaceDetector.

http://www.research.ibm.com/designpatterns/example.htm Observer pattern

3

Figure: Listener Types

Choosing the right type for your listener is important, since JPF automatically registers listeners (and properties) based on this type. You can bypass and

directly implement single listener interfaces, but then you also have to do the proper registrations.

Usually, the notification alone is not enough, and the listener needs to acquire more information from JPF. For this purpose, we provide either the search

or the vm object as notification arguments, and the listener has to use these as "Facades" to query or interact JPF. It therefore matters to implement the

listener within the right package.

SearchListener

SearchListener instances are used to monitor the state space search process, e.g. to create graphical representations of the state-graph. They provide

notification methods for all major Search actions.

package gov.nasa.jpf.search;

public interface SearchListener extends JPFListener {

 void searchStarted (Search search);

 void stateAdvanced (Search search); // got next state

 void stateProcessed (Search search); // state is fully explored

 void stateBacktracked (Search search); // state was backtracked one step (same path)

 void stateStored (Search search); // somebody stored the state

 void stateRestored (Search search); // previously generated state was restored (any path)

 void propertyViolated (Search search); // JPF encountered a property violation

 void searchConstraintHit (Search search); // e.g. max search depth

 void searchFinished (Search search);

}}

For the standard depth first search (gov.nasa.jpf.search.DFSearch), listener implementations can assume the following notification model:

4

Figure: Depth first listener notifications

The most frequently used notifications are:

stateAdvanced - e.g. to store additional, backtrackable state information in an associative array

stateBacktracked - to restore additional state information

searchFinished - to process listener results

VMListener

This is a fat interface, reflecting various VM operations

package gov.nasa.jpf.jvm;

public interface VMListener extends JPFListener {

 //--- basic bytecode execution

 void executeInstruction (JVM vm); // JVM is about to execute the next instruction

 void instructionExecuted (JVM vm); // JVM has executed an instruction

 //--- thread operations (scheduling)

 void threadStarted (JVM vm); // new Thread entered run()

 void threadBlocked (JVM vm); // thread waits to acquire a lock

 void threadWaiting (JVM vm); // thread is waiting for signal

 void threadNotified (JVM vm); // thread got notified

 void threadInterrupted (JVM vm); // thread got interrupted

 void threadTerminated (JVM vm); // Thread exited run()

 void threadScheduled (JVM vm); // new thread was scheduled by JVM

 //--- class management

 void classLoaded (JVM vm); // new class was loaded

 //--- object operations

 void objectCreated (JVM vm); // new object was created

 void objectReleased (JVM vm); // object was garbage collected

 void objectLocked (JVM vm); // object lock acquired

 void objectUnlocked (JVM vm); // object lock released

 void objectWait (JVM vm); // somebody waits for object lock

 void objectNotify (JVM vm); // notify single waiter for object lock

 void objectNotifyAll (JVM vm); // notify all waiters for object lock

 void gcBegin (JVM vm); // start garbage collection

 void gcEnd (JVM vm); // garbage collection finished

 void exceptionThrown (JVM vm); // exception was thrown

5

 //--- ChoiceGenerator operations

 void choiceGeneratorSet (JVM vm); // new ChoiceGenerator registered

 void choiceGeneratorAdvanced (JVM vm); // new choice from current ChoiceGenerator

 void choiceGeneratorProcessed (JVM vm); // current ChoiceGenerator processed all choices

}

The most commonly used methods are the instruction notifications:

executeInstruction - is called before a bytecode instruction gets executed by the VM. The listener can even use this to skip and/or replace this instruction,

which is useful for non-invasive instrumentation.

instructionExecuted - is the post-execution notification, which is suitable to keep track of execution results (method invocations, assigned field values,

branch results etc.)

Example

The following example is a slightly abbreviated form of race detector. The basic idea is simple: every time we encounter a new scheduling point (== new

ThreadChoiceGenerator) that is due to a field access on a shared object, we check if any of the other runnable threads is currently accessing the same

field on the same object. If at least one operation is a putfield, we have a potential race.

The example shows three aspects that are quite typical:

1. listeners often use only a small number of notification methods

2. they often do not require a huge amount of code (most expensive operations are performed by the JVM/the Search)

3. sometimes you have to dig deep into JPF internal constructs, to extract things like ThreadInfo, FieldInfo and ChoiceGenerator instances

public class PreciseRaceDetector extends PropertyListenerAdapter {

 FieldInfo raceField;

 ...

 //--- the Property part

 public boolean check(Search search, JVM vm) {

 return (raceField == null);

 }

 //--- the VMListener part

 public void choiceGeneratorSet(JVM vm) {

 ChoiceGenerator<?> cg = vm.getLastChoiceGenerator();

 if (cg instanceof ThreadChoiceFromSet) {

 ThreadInfo[] threads = ((ThreadChoiceFromSet)cg).getAllThreadChoices();

 ElementInfo[] eiCandidates = new ElementInfo[threads.length];

 FieldInfo[] fiCandidates = new FieldInfo[threads.length];

 for (int i=0; i<threads.length; i++) {

 ThreadInfo ti = threads[i];

 Instruction insn = ti.getPC();

 if (insn instanceof FieldInstruction) { // Ok, its a get/putfield

 FieldInstruction finsn = (FieldInstruction)insn;

 FieldInfo fi = finsn.getFieldInfo();

 if (StringSetMatcher.isMatch(fi.getFullName(), includes, excludes)) {

 ElementInfo ei = finsn.peekElementInfo(ti);

 // check if we have seen it before from another thread

 int idx=-1;

 for (int j=0; j<i; j++) {

 if ((ei == eiCandidates[j]) && (fi == fiCandidates[j])) {

 idx = j;

 break;

 }

6

 }

 if (idx >= 0){ // yes, we have multiple accesses on the same object/field

 Instruction otherInsn = threads[idx].getPC();

 if (isPutInsn(otherInsn) || isPutInsn(insn)) {

 raceField = ((FieldInstruction)insn).getFieldInfo();

 ..

 return;

 }

 } else {

 eiCandidates[i] = ei;

 fiCandidates[i] = fi;

 }

 }

 }

 }

 }

 }

 public void executeInstruction (JVM jvm) {

 if (raceField != null) { // we're done, report as quickly as possible

 ThreadInfo ti = jvm.getLastThreadInfo();

 ti.breakTransition();

 }

 }

}

Instantiation

Explicit instantiation of a listener (e.g. from a JPF shell) can be done in any way. If the listener is specified as a JPF property, it's class either needs to

have a default constructor, or a constructor that takes a single gov.nasa.jpf.Config argument. The Config object that is passed into this constructor by

JPF is the same that was used for the ininitialization of JPF itself. This is the preferred method if the listener has to be parameterized. In case of the

PreciseRaceDetector example, this can be used to filter relevant fields with regular expressions:

public class PreciseRaceDetector extends PropertyListenerAdapter {

 ...

 StringSetMatcher includes = null;

 StringSetMatcher excludes = null;

 public PreciseRaceDetector (Config conf) {

 includes = StringSetMatcher.getNonEmpty(conf.getStringArray("race.include"));

 excludes = StringSetMatcher.getNonEmpty(conf.getStringArray("race.exclude"));

 }

 ...

 public void choiceGeneratorSet(JVM vm) {

 ...

 FieldInfo fi =..

 if (StringSetMatcher.isMatch(fi.getFullName(), includes, excludes))

 ...

 }

Configuration

Listener configuration can be done in a number of ways: via JPF properties from the command line or a *.jpf file, via JPF APIs from a JPF shell (a

program invoking JPF), or from the system under test by using Java annotations (i.e. without code modification).

Since listeners are executed by the host VM, they have to be in the CLASSPATH (jpf-core.native_classpath property).

command line

7

the listener property can be used to specify a colon separated list of listener class names:

bin/jpf ... +listener=x.y.MyFirstListener,x.z.MySecondListener ...

*.jpf property file

If you have several listeners and/or a number of other JPF options, it is more convenient to add the listener property to a *.jpf file:

Racer-listener.jpf - JPF mode property file to detect data races in jpftest.Racer

target = jpftest.Racer

listener=gov.nasa.jpf.tools.PreciseRaceDetector

Autoload Annotations

Consider your system under test is marked up with a Java annotation that represent properties. For example, you can use the @NonNull annotation to

express that a method is not allowed to return a null value:

import gov.nasa.jpf.NonNull;

 ...

 @NonNull X computeX (..) {

 //.. some complex computation

 }

 ...

You can use *.jpf property files (or the command line, if you love to type) to tell JPF that it should automatically load and register a corresponding listener

(e.g. NonNullChecker) if it encounters such a @NonNull annotation during class loading:

..

listener.autoload = gov.nasa.jpf.NonNull,...

listener.gov.nasa.jpf.NonNull = gov.nasa.jpf.tools.NonNullChecker

...

@JPFConfig annotation (SuT)

You can also explicitly direct JPF to load the listener from within your application by using the @JPFConfig annotation:

import gov.nasa.jpf.JPFConfig;

..

// set JPF properties via properties at class load time

@JPFConfig ({"listener+=.tools.SharedChecker", ..})

public class TestNonShared implements Runnable {

 ...

}

However, this is not recommended outside JPF tests - the application would run, but not compile without JPF.

Verify API (SuT)

A less often used method is to set listeners is to use the gov.nasa.jpf.jvm.Verify API from within your application. With this, you can control the exact load

time of the listener (but be aware of backtracking). With this, the above example would become

import gov.nasa.jpf.jvm.Verify;

..

public class TestNonShared implements Runnable {

 ...

 public static void main (String[] args){

 // set JPF properties programmatically

 Verify.setProperties("listener+=.tools.SharedChecker", ...);

 ..

8

 }

}

This method should only be used in special cases (models written explicitly for JPF verification), since it does not run outside JPF.

JPF API (embedded mode)

If JPF is explicitly started from within another application, listeners can be instantiated at will and configured via the JPF.addListener(..) API:

MyListener listener=new MyListener(..);

..

Config config = JPF.createConfig(args);

JPF jpf = new JPF(config);

jpf.addListener(listener);

jpf.run();

..

Most listeners tend to fall into three major categories: (1) system class (e.g. for logging), (2) complex properties, and (3) JPF debugging. The first

category (1) is usually configured via the default.properties, (2) is configured with an application specific mode property file, and (3) is specified via the

command line ('+key=value' overrides).

	Listeners
	TracNav
	Introduction...
	Introduction...
	Installing JPF...
	User Guide...
	Developer Guide
	MJI...
	Projects...
	About...

	Listener Types
	SearchListener
	VMListener
	Example
	Instantiation
	Configuration
	command line
	*.jpf property file
	Autoload Annotations
	@JPFConfig annotation (SuT)
	Verify API (SuT)
	JPF API (embedded mode)

