
Wikiprint Book

Title: Unit Checking for Java IDE

Subject: Java Path Finder - external-projects/start

Version: 8

Date: 02/19/13 07:59:28

2

Table of Contents

TracNav 3

Introduction... 3

Installing JPF... 3

User Guide... 3

Developer Guide... 3

Projects... 3

About... 3

Unit Checking for Java IDE 3

LTL Listener 3

Java RaceFinder 3

jpf-nhandler 4

3

TracNav

• JPFWiki - Welcome Page

Introduction...

Installing JPF...

User Guide...

Developer Guide...

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

Not all projects are created equal. This section of the wiki is reserved for links to and descriptions of JPF related projects that are not (yet) hosted on

 http://babelfish.arc.nasa.gov

Unit Checking for Java IDE

This is a JPF extension that allows to run JUnit tests under JPF. The key idea is to employ model checking in a way similar to unit testing, i.e. to create

simple scenarios for checking small portions of software - hence the term unit checking. While only a single execution path is explored when a JUnit test

is run under standard JVM, running the tests under JPF leads to exhaustive examination of all possible executions (including all thread interleaving).

The tool can be run from command-line or from Eclipse IDE. A plugin for Eclipse was developed, which provides nice GUI to the tool - it allows to run the

unit tests and display test results in the same way as standard JUnit plugin for Eclipse.

The extension was developed by Michal Kebrt (michal.kebrt "at" gmail.com). Additional information and the source code can be found at

 http://aiya.ms.mff.cuni.cz/unitchecking/dist.

LTL Listener

jpf-ltl is a Java Pathfinder extension which enables the verification of temporal properties for sequential and concurrency Java programs. jpf-ltl

aims at supporting the verification of rich-configuration events, such as method invocations with object instance aware or local and global program

variables. At this point, jpf-ltl can verify temporal properties of method call sequences, linear relations between program variables and the

combination of both.

jpf-ltl follows the new JPF project structure, i.e. can be easily integrated into existing JPF installations. It makes use of Dimitra Giannakopoulou's

LTL2BA translator to transform LTL expressions into Büchi automata.

The extension is actively developed by Nguyen Anh Cuong (anhcuong "at" nus.edu.sg) of the University of Singapore, sources are available from

 http://bitbucket.org/nacuong/jpf-ltl.

Java RaceFinder

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC
http://babelfish.arc.nasa.gov
http://aiya.ms.mff.cuni.cz/unitchecking/dist
http://bitbucket.org/nacuong/jpf-ltl

4

 JRF is an precise data race detectable extension to Java PathFinder (JPF). The motivation for JRF comes from the unsound nature of JPF in the Java

memory model that is relaxed and does not require sequential consistency. The main contribution of JRF is that the data race freedom verified by JRF

guarantees the soundness of the proof constructed using JPF. In other words, while JPF is exploring the reachable state space of the system, JRF is

able to detect race conditions allowed by the relaxed memory model. If the program is free of races, then it only consists of sequentially consistent

executions, which means that JPF did not miss any behaviors of the relaxed memory model in its search.

The JRF download page includes instructions for installation. To learn more:

• Publications at the JRF home page

• JRF Overview slides by KyungHee Kim from a May 2010 presentation at NASA Ames

• JRF JPF Implementation Overview slides by KyungHee Kim from a May 2010 presentation at NASA Ames

jpf-nhandler

jpf-nhandler is an extension of JPF that automatically delegates the execution of the system under test methods from JPF to the host JVM. The key

application of jpf-nhandler is to automatically intercept and handle native calls within JPF. It can also be applied on non-native calls.

The implementation of jpf-nhandler mostly relies on MJI. It creates bytecode (and source code, at user will) for native peers on-the-fly using the

BCEL library. By using jpf-nhandler, rather than model checking a call, the call is executed outside of JPF, in its normal environment. Other applications

of our tool include mitigating the state space explosion problem, saving internal memory for JPF, and speeding up JPF.

This extension is developed by Nastaran Shafiei (nastaran.shafiei "at" gmail.com) and Franck van Breugel (franck "at" cse.yorku.ca) at the York

University. Sources are available from https://bitbucket.org/nastaran/jpf-nhandler.

http://www.cise.ufl.edu/research/JavaRacefinder/Java_RaceFinder/JRF_Home.html
http://www.cise.ufl.edu/research/JavaRacefinder/Java_RaceFinder/JRF_Home.html
http://www.cise.ufl.edu/research/JavaRacefinder/Java_RaceFinder/JRF_Home.html
http://www.cise.ufl.edu/research/JavaRacefinder/Java_RaceFinder/JRF_Home.html
http://www.cise.ufl.edu/research/JavaRacefinder/Java_RaceFinder/JRF_Home.html
http://www.cise.ufl.edu/research/JavaRacefinder/Java_RaceFinder/JRF_Home.html
http://www.cise.ufl.edu/research/JavaRacefinder/Java_RaceFinder/Download.html
http://www.cise.ufl.edu/research/JavaRacefinder/Java_RaceFinder/Document.html
http://students.cs.byu.edu/~egm/downloads/NASA-May-2010-JRF-Overview.pdf
http://www.cise.ufl.edu/~khkim/
http://students.cs.byu.edu/~egm/downloads/NASA-May-2010-JRF-Impementation.pdf
http://www.cise.ufl.edu/~khkim/
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/mji
https://bitbucket.org/nastaran/jpf-nhandler

	TracNav
	TracNav
	Introduction...
	Introduction...
	Installing JPF...
	User Guide...
	Developer Guide...
	Projects...
	About...

	Unit Checking for Java IDE
	LTL Listener
	Java RaceFinder
	jpf-nhandler

