
Wikiprint Book

Title: Example: java.util.Random

Subject: Java Path Finder - intro/random_example

Version: 5

Date: 02/21/2013 04:32:19 AM

2

Table of Contents

TracNav 3

Introduction 3

Installing JPF... 3

User Guide... 3

Developer Guide... 3

Projects... 3

About... 3

Example: java.util.Random 3

Testing 4

Model Checking 4

3

TracNav

• JPFWiki - Welcome Page

Introduction

• What is JPF

• Testing vs model checking

• Random Example

• Race Example

• JPF classification

Installing JPF...

User Guide...

Developer Guide...

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

Example: java.util.Random

We start with a simple example that uses java.util.Random. Consider the following program that obtains two random values in (2) and (3), and then

performs some computation (4) with them.

import java.util.Random;

public class Rand {

 public static void main (String[] args) {

 Random random = new Random(42); // (1)

 int a = random.nextInt(2); // (2)

 System.out.println("a=" + a);

 //... lots of code here

 int b = random.nextInt(3); // (3)

 System.out.println(" b=" + b);

 int c = a/(b+a -2); // (4)

 System.out.println(" c=" + c);

 }

}

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/what_is_jpf
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/random_example
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/race_example
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/classification
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC

4

Testing

Executing this program with a normal Java VM yields something like the following output. If we don't provide an explicit seed when creating the Random

object in (1), the result is going to differ between runs, but every run will choose just a single 'a' and 'b' value (i.e. print just a single "a=.." and "b=.." line.

> java Rand

a=1

 b=0

 c=-1

>

Let's look at a graphical representation of all the ways our program could be executed, and how it actually was executed in our test run. The nodes of the

graph represent "program states", and the edges "transitions" the execution could take from a certain state.

Figure: Random example

Model Checking

Enter JPF - not much different results if we start JPF as a plain 'java' replacement. The only difference is that it (a) takes longer to complete, and (b) tells

us something about a "search", which hints on that something more than in our test run is going on

> bin/jpf Rand

JavaPathfinder v4.1 - (C) 1999-2007 RIACS/NASA Ames Research Center

== system under test

application: /Users/pcmehlitz/tmp/Rand.java

== search started: 5/23/07 11:48 PM

a=1

 b=0

 c=-1

== results

no errors detected

== search finished: 5/23/07 11:48 PM

>

What is this "search" supposed to mean? Looking at source line (4) we realize that there is a potential problem: for certain 'a' and 'b' values, this

expression can cause a "division by zero" ArithmeticException. Depending on the random seed used in (1), it's quite possible we would never encounter

this case if we run (i.e. test) the program with a normal JVM.

Re-enter JPF - but this time we tell it to not only consider single values for 'a' and 'b', but look at all possible choices:

> bin/jpf +cg.enumerate_random=true Rand

JavaPathfinder v4.1 - (C) 1999-2007 RIACS/NASA Ames Research Center

== system under test

application: /Users/pcmehlitz/tmp/Rand.java

5

== search started: 5/23/07 11:49 PM

a=0

 b=0

 c=0

 b=1

 c=0

 b=2

== error #1

gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty

java.lang.ArithmeticException: division by zero

 at Rand.main(Rand.java:15)

....

>

What has happened? By specifying "+vm.enumerate_random=true" we told JPF to consider all possible values for expressions (2) and (3). JPF starts

with "a=0", then picks "b=0", which yields a valid "c=0" value. But instead of terminating like a normal VM, JPF recognized that there are more choices

left, so it "backtracks" to (3) and picks "b=1". Again, no problem here with computing "c=0". Back to (3), JPF now tries "b=2", which of course spells

disaster for our little program when executing (4), as can be seen by the following error report.

Here is a graphical representation of this search process. It should be noted that JPF per default only runs up to the point where it finds an error or there

are no more choices left to explore. But if we would somehow "fix" the "a=0,b=2" case, JPF would still find the "a=1,b=1" case in the next run, since it

systematically tries all choices. No matter what error it finds, JPF also keeps the complete "trace" (execution path) how it got to this error (denoted by the

red arrows), which means we don't have to debug the program to find out.

Figure: Random example

	TracNav
	TracNav
	Introduction
	Introduction
	Installing JPF...
	User Guide...
	Developer Guide...
	Projects...
	About...

	Example: java.util.Random
	Testing
	Model Checking

