
1

Motivating example

The motivation for the project comes from the Airline industry, where I have been working for two years.

During my work I have experienced some difficulties with protecting some classes from being accessed by an unauthorized code. Java language provide

only a very limited protection in sort of all or nothing way. There are only four following protection levels:

• public – if a variable member or method is declared public, it means all other classes, regardless of the package they belong to, can access the

member or call the method.

• protected – if a variable member or method is declared protected, it means all classes from the package in which protected member or method is

declared, can access the member or call the method. Additionally, protected member may be accessed by a subclass even if the subclass is in a

different package.

• default - if a variable member or method is declared protected, it means all classes from the package in which protected member or method is

declared, can access the member or call the method.

• private – if a variable member or method is declared private, it means they can’t be accessed by code in any class other than the class in which the

private member or method is declared.

There are other access modifiers in Object-Oriented languages, like friend in C++ which limits access to members to chosen set of classes.

Unfortunately, there is not such modifier in Java.

Confined annotation would simultaneously leverage annotations mechanisms and JPF listeners to emulate a new access modifier, which allows

programmers to limit access to type, field, method or constructor to specified set of classes. It would come along with Region annotation allowing

programmer to gather classes into logical groups.

Consider the following program called TakeoffCalculator which calculates the planes takeoff performance. For this elaborate and complicated calculation

program will need a very precise data about the conditions outside. In order to simplify the example, we will focus on the air density, which is being

calculated by specialized classes. Unfortunately, passing the object across various packages demands us to use public access modifiers.

public class AirDensity {

 private Temperature airTemperature;

 private Elevation fieldElevation;

 public AirDensity() {

 }

 public void setAirTemperature(Temperature t) { … }

 public Temperature getAirTemperature() { … }

 public void setFieldElevation(Elevation e) { … }

 public Elevation getFieldElevation() { … }

}

As shown above, though airTemperature and fieldElevation are privates, they can be set by any object. But, there are three hundred people on the plane

and we have to be absolutely certain that those data comes from the proper instruments. Hopefully, there is the AirDensityFactory class we may trust. It

will be the only class entitled to create AirDensity object and set its values. Our code for AirDensity class would look like the following now:

public class AirDensity {

 @Confined

 private Temperature airTemperature;

 @Confined

 private Elevation fieldElevation;

 public AirDensity() {

 }

 @Confined(“AirDensityFactory”)

 public void setAirTemperature(Temperature t) { … }

 public Temperature getAirTemperature() { … }

 @Confined(“AirDensityFactory”)

 public void setFieldElevation(Elevation e) { … }

2

 public Elevation getFieldElevation() { … }

}

Why package access level is not enough?

Consider the following sample:

class TakeoffCalculator {

 …

 public void calculateTakeoff() {

 AirDensity ad = aircraftDataFacade.getAirDensity();

 …

 }

}

public class AircraftDataFacade {

 public AirDensity getAirDensity() {

 AirDensity ad = AirDensityFactory.create();

 ad.getAirTemperature().setDegrees(1234);

 return ad;

 }

}

It is possible to bypass restrictions by using the reference to object temperature.

	Motivating example

