
1

Extended Test Gen

The Extended Test Gen extension contains functionality improving test generation and execution capability. Most of this new functionality is based

around the "Debug" class, whose functions are variants of the standard "Verify" class functions for creating ChoiceGenerators. These functions differ

primarily in that they are "tagged" with a String (e.g., instead of Verify.getBoolean(), we have Debug.getBoolean("a")). This allows much more readable

test cases to be produced and makes it easier for users to relate ChoiceGenerators to their code instrumentation.

Features

• Support for "tagging" of ChoiceGenerators.

• Support for symbolic code instrumentation, e.g. Debug.getSymbolicInteger(0,50,"symInt")

• Support for instrumentation-based MCDC test generation and test suite reduction

Developer Info

Three packages of interest exist:

gov.nasa.jpf.extendedtestgen - Contains the Debug class, as well as generic listeners that hook into two new events generated by the Debug class.

These events are "storeTraceIf", which occurs when a trace is stored, and "testCaseFinished", which occurs when a test case's input is exhausted during

test case execution. These listeners allow coverage metrics to be calculated and test case execution to be monitored.

gov.nasa.jpf.extendedtestgen.choice - Contains ChoiceGenerators that allow "tagged" ChoiceGenerators, as well as ChoiceGenerators which contain

only one choice. The latter feature is used for running test cases - the ChoiceGenerator is created using information from an existing test case.

gov.nasa.jpf.extendedtestgen.mcdc - Contains two classes that can take a test suite and drive multiple executions of JPF to measure the MC/DC

coverage provided by the test suite as well as reduce the test suite while maintaining MC/DC coverage.

Usage

The Debug class can be used much like the Verify class - nothing special there. Of note, though, is the "tagging" when creating ChoiceGenerators - it

doesn't matter what you tag, but for clarity's sake (i.e., so you can understand the test cases generated) each tag should be different. Also, if you expect

the code to change over time, different tags will keep your tests from becoming invalidated. The reason for this is explained below.

When storing traces, the first String names the test suite name, while the second names the comment. For example:

Debug.storeTraceIf(!d, "TestFile.java-trace", "MCDC=13_14"); Debug.storeTraceIf(d, "TestFile.java-trace", "MCDC=14_14");

Both of these will generate different tests, but they will be put in the same test suite in the file "TestFile.java-trace". The comment indicates that these are

test 13 and 14 of 14 total MCDC tests. The comment is not needed to generate/run tests, but is used by the MC/DC listeners to track MC/DC tests

found/covered.

To reduce a test suite by MC/DC, use the usual JPF arguments, adding two more: "+testsuite" for the test suite to reduce, and "+testsuite_reduced" for

the reduced test suite name. Example:

+testsuite="TestFile.java-trace" +testsuite_reduced="TestFile_reduced.java-trace"

Addtionally, the main file should be "gov.nasa.jpf.complexcoverage.mcdc.ReduceTestSuiteByMCDC", not the usual "gov.nasa.jpf.JPF" (this runs JPF

once for each test case in the suite).

To run a single test case, run JPF as usual, adding the argument "+testcase=" as follows:

+testcase="TestFile_reduced.java-trace,0"

This tells JPF to use the 0th test case in the suite "TestFile_reduced.java-trace" to drive execution. Basically, while JPF runs, each call to

"Debug.getSomeType("sometag")" uses data from the test case to create the ChoiceGenerator. The first call to "Debug.getSomeType("sometag")" looks

up the first "sometag" value from the test case, the second call looks up the second "sometag" value from the test case, etc., and a ChoiceGenerator is

created that has only one choice, the one found in the testcase. If no more values can be found for "sometag", a ChoiceGenerator is generated in the

usual fashion.

Related Publications

2

• Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder -- NASA Formal Methods (NFM) 2009 --

Publication detailing this extension (was previously named complexcoverage).

• Parallel Symbolic Execution for Structural Test Generation -- International Symposium on Software Testing and Analysis (ISSTA) 2010. -- Publication

detailing a method parallelizing symbolic execution the relies on the "tagging" ability of the above extension. Also briefly discusses this extension.

Repository

The Mercurial repository is on http://babelfish.arc.nasa.gov/hg/jpf/jpf-extended-test-gen

http://babelfish.arc.nasa.gov/hg/jpf/jpf-extended-test-gen

	Extended Test Gen
	Extended Test Gen
	Features
	Developer Info
	Usage
	Related Publications
	Repository

