
Wikiprint Book

Title: projects/jpf-mango/archive/FirstExample

Subject: Java Path Finder - projects/jpf-mango/archive/FirstExample

Version: 2

Date: 02/21/2013 01:55:34 PM

2

Table of Contents

Example 1: Hypotheses, Conjectures, and Loop Invariants 3

Source code 3

Specification 3

3

Example 1: Hypotheses, Conjectures, and Loop Invariants

Mango with JavaPathfinder, jpf-mango, has produced its first totally automated, not-completely-trivial specification.

There are two separate embedded jpf machines in the code base. The first is "standard" in the sense that it is driven by java byte code. The other

one is "exotic", in that it traverses internally generated graphs, interpreting the nodes and edges as instructions from a custom bytecode factory.

Heavy use has been made of choice generators and VM listeners in both of these jpf embeddings.

The code and analysis for the "nested_blowup" example are included below. This is the first complete example with the new jpf backtrace

mechanism for invariants in place. The code was written primarily to stress various mango systems, and so is not representative of anything

particularly useful. Mango works from the innermost loop outwards.

Source code

Specification

http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/embedded
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/bytecode_factory
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/choicegenerator
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/listener

4

The spec for each "module", meaning a loop or method body, consists of

Yellow hypotheses: condition to stay in the module

Red conjectures: condition to leave an embedded module

Blue state transition: the effect of the module on its input parameters

The "^" indicates values that are not loop invariant, so *lack* of a ^ is very significant. The "op0" quantity refers to an unknown input value on the

operand stack. Typically, by the time a loop starts up, the counter is already loaded into the operand stack, and so its "context" is unknown to the

loop. The conjectures are generated automatically and imply loop termination. Of course, the termination conjecture for the outermost loop is false,

and this is essentially what causes Mango to give up at this point.

A far more detailed spec is produced in persistent internal form for subsequent referral by dependent modules. But the English spec is intended to

be the primary vehicle for delivering meaning to the code assurance analyst.

Actually proving the conjectures, and, even harder, generating appropriate hypotheses for such proofs, are interesting research questions. Anyone

interested in the so-called Grand Challenge Verifying Compiler is welcome to embed the mango model in a theorem prover and tackle this

problem. I am always on the lookout for collaborators.

Lots more to do, and lots more examples to generate, but all the pieces are now in place. I should have a stable version of jpf-mango by Spring

2010.

http://cs-www.cs.yale.edu/homes/dachuan/Grand/HoareCC.pdf

	Example 1: Hypotheses, Conjectures, and Loop Invariants
	Example 1: Hypotheses, Conjectures, and Loop Invariants
	Example 1: Hypotheses, Conjectures, and Loop Invariants

	Source code
	Specification

