
1

Case Generalization

Case splits must be avoided whenever possible because cascading case splits cause exponential growth. Two techniques have been

implemented in Mango to mitigate this problem: case generalization and case consolidation. Currently the user must add rules to identify specific

cases of an existing specification together with a generalization schema. In time much of this user effort may be automated. Given this information,

Mango regenerates the specification, first determining the soundness of the schema and then revising the specification accordingly if all goes well.

The following example is for an implementation of java.lang.reflect.Array.get(). This utility returns the value of a passed array at a specified index.

In addition to the usual array bounds checks, there is also the question of packaging the output in the appropriate object. Each primitive type gets

its own corresponding class, and this leads to a giant case split. The primitive cases double, float, long, int, short, byte, and char are all

generalized to a single case. The primitive case boolean is consolidated into a single case representing both possible outcomes. The remaining

case covers all non-primitive values. In addition to this substantial case collapse, several other bad cases resulting in thrown exceptions slipped

through the automatic filter and were explicitly killed by user supplied rules. From sixteen original cases, the final result has only three, shown

below.

Object java.lang.reflect.Array.get(Object array, int index)

get(Ljava/lang/Object;I)Ljava/lang/Object;

1

 hypotheses

 array is defined

 component class of Class-object array does not equal boolean

 component class of Class-object array does not equal byte

 component class of Class-object array does not equal char

 component class of Class-object array does not equal double

 component class of Class-object array does not equal float

 component class of Class-object array does not equal int

 component class of Class-object array does not equal long

 component class of Class-object array does not equal short

 index is greater than or equal to 0

 index is less than length of the Array array

 array.getClass()Ljava/lang/Class; does not throw invocation exception

 array.getClass()Ljava/lang/Class; resolves in class java.lang.Object.getClass()Ljava/lang/Class;

 array.isArray()Z does not throw invocation exception

 Class-object array is an array

 Class-object array.getComponentType()Ljava/lang/Class; resolves in class

java.lang.Class.getComponentType()Ljava/lang/Class;

 Class-object array.isArray()Z resolves in class java.lang.Class.isArray()Z

 component class of array.getName()Ljava/lang/String; resolves in class java.lang.Class.getName()Ljava/lang/String;

 java.lang.String.compareTo(Ljava/lang/String;)I does not throw invocation exception

 [2.2.1.2]

 Returns java.lang.Object: array.index

 2

 hypotheses

 assumptions

 array is defined

 component class of Class-object array equals TYPE

 index is greater than or equal to 0

 index is less than length of the Array array

2

 array.getClass()Ljava/lang/Class; does not throw invocation exception

 array.getClass()Ljava/lang/Class; resolves in class java.lang.Object.getClass()Ljava/lang/Class;

 array.isArray()Z does not throw invocation exception

 Class-object array is an array

 Class-object array.getComponentType()Ljava/lang/Class; resolves in class

java.lang.Class.getComponentType()Ljava/lang/Class;

 Class-object array.isArray()Z resolves in class java.lang.Class.isArray()Z

 component class of array.getName()Ljava/lang/String; resolves in class java.lang.Class.getName()Ljava/lang/String;

 java.lang.String.compareTo(Ljava/lang/String;)I does not throw invocation exception

 #0.java.lang.TYPE.value = array.index

 Returns java.lang.Object: #0

 assumptions: 'TYPE --> double

 assumptions: 'TYPE --> float

 assumptions: 'TYPE --> long

 assumptions: 'TYPE --> int

 assumptions: 'TYPE --> short

 assumptions: 'TYPE --> byte

 assumptions: 'TYPE --> char

 3

 hypotheses

 case false

 array is defined

 array.index equals 0

 component class of Class-object array equals boolean

 index is greater than or equal to 0

 index is less than length of the Array array

 array.getClass()Ljava/lang/Class; does not throw invocation exception

 array.getClass()Ljava/lang/Class; resolves in class java.lang.Object.getClass()Ljava/lang/Class;

 array.isArray()Z does not throw invocation exception

 Class-object array is an array

 Class-object array.getComponentType()Ljava/lang/Class; resolves in class

java.lang.Class.getComponentType()Ljava/lang/Class;

 Class-object array.isArray()Z resolves in class java.lang.Class.isArray()Z

 component class of array.getName()Ljava/lang/String; resolves in class java.lang.Class.getName()Ljava/lang/String;

 java.lang.String.compareTo(Ljava/lang/String;)I does not throw invocation exception

 case true

 array is defined

 array.index does not equal 0

 component class of Class-object array equals boolean

 index is greater than or equal to 0

 index is less than length of the Array array

 array.getClass()Ljava/lang/Class; does not throw invocation exception

 array.getClass()Ljava/lang/Class; resolves in class java.lang.Object.getClass()Ljava/lang/Class;

 array.isArray()Z does not throw invocation exception

 Class-object array is an array

 Class-object array.getComponentType()Ljava/lang/Class; resolves in class

3

java.lang.Class.getComponentType()Ljava/lang/Class;

 Class-object array.isArray()Z resolves in class java.lang.Class.isArray()Z

 component class of array.getName()Ljava/lang/String; resolves in class java.lang.Class.getName()Ljava/lang/String;

 java.lang.String.compareTo(Ljava/lang/String;)I does not throw invocation exception

 java.lang.String.compareToIgnoreCase(Ljava/lang/String;)I does not throw invocation exception

 #0.java.lang.Boolean.value = BOOLEAN

 Returns java.lang.Object: #0

 case true: 'BOOLEAN --> 1

 case false: 'BOOLEAN --> 0

	Case Generalization
	Case Generalization
	Case Generalization

	Object java.lang.reflect.Array.get(Object array, int index)

