ItsAWrap example, special considerations for loops

This example focusses on issues that arise in the consideration of loops. In particular, the introduction of "shadow rules" to imply the truth of
automatically generated loop-exit conjectures. This example assumes you have already worked through the Hello World and CarRecall examples. If not,
you might find the steps a little hard to follow. However, links have been provided to parallel steps in the earlier examples for your convenience.

Start by loading the ItsAWrap project, located inside the "rbk" folder.

Restore the default preferences, then check preferences "Suppress advice dialogs" and "Do not pause for case-splits”.

Open the ItsAWrap class in an editor window.
Populate and run, using the ItsAWrap class as command target.

Observe that three specifications are generated,for the loop body of the clear method, for the clear method, and for the test method. We shall consider
each of these in turn.

Open the loop specification (see figure).

[L*. Problems w Specification E Console w baseline.ltsAWrap.clea
baseline. ltsAWrap.clear([l)V.loops.loop at 47 for(int i=0;i<10;++i){.case:

[+ input assumptions

QL’H than 1@

X 15 .

1 15 greater than or equal to @

1 15 le than length of the Array x

[* Qutput state

[- heap

[- <localVar> at unresolved location
x[i]=0

[+ stack

=t
1]

L

=
+ =

g

The specification describes the state transition of one pass through the loop. In order to remain in the loop, "i" must be within bounds. The output state
sets x[i]=0 and increments "i". The rest of the specification concerns "op0". The point is that "i" is pushed onto the operand stack for a compare against
10, just prior to the pass through the loop. Likewise, the loop output state pushes "i+1" onto the operand stack.

Now consider the specification for the clear method.

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/gettingStarted
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/examples/CarRecall
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/examples/testProject
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/examples/CarRecall#restoreDefaults
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/examples/CarRecall#open
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/examples/CarRecall#go
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/examples/CarRecall#gutterIcons
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/gettingStarted#gutterSpecAccess

baseline.ltsaWrap.clear{[l)V.cases. 1

[+ input assumptions
x 1s defined
length of the Array x is greater than or equal to 18
it is greater than or equal to 18

[* output state

[+ heap

heaph
No return value.

The "2" link indicates a quantity that is derived from the output state of a loop. Clicking on the "" reveals a new page with link to the loop and a separate
link to the loop input state. Following the loop link reveals the specification for the loop in the Mango Explorer, whereas following the state link reveals a
new page with a description of the loop input state. Notice you can go back and forth between pages of a view using the familiar "forwards arrow",
"backwards array" and "home" buttons in the view menu bar.

Now observe that two of the assumptions are green while the third is blue. A blue assumption is actually a conjecture generated by Mango. In this case,
the conjecture is the criterion for exiting the loop. A priori, any loop has the potential to hang, so conditions are always generated which imply loop
termination. In this case, the loop exit condition states that the loop output value of "i" is greater than or equal to ten. Because this assumption is stated in
terms of loop output, it is a conjecture. Mango just doesn't know if this statement is true or false, or possibly true for some input states and false for
others. Of course, Mango should know, but for now, this functionality is missing, see bug #7.

It is indeed the case that the loop termination conjecture is sometimes true and sometimes false. For if "x" is not defined, then a NullPointerException will
be thrown, and if "i" is out of bounds, then an IndexOutOfBounds exception will be thrown. Since the "All exceptions are bad local exits" preference is
checked, these exit criteria are considered invalid. This brings us to the crux of the matter. Currently the burden is on the user to generate constraints on
the input state which imply the turn of the termination conjecture. The two assumptions in green were added by the user for precisely this reason. A
moments reflection is enough to see that these assumptions deny the possibility of a thrown exception, and hence the truth of the conjecture. What is
required is a mechanism to generate the green assumptions automatically in as general a setting as possible.

Currently, the green assumptions are created by the attentive user by writing shadow rules (see figure below). Unfortunately, the editing facility for these
shadow rules is rather buggy, see bug #2. For information on creating rules, see how to write a rule.

@ Mango Explorer B3 = [ml E length of x >=10 &3 [J] tsAWrap.java El length of x &2 21
! | ® = e Gl Iength of x >=10 Rename Order: 1 active Iength of x Rename Order: 1
¥ = Mango Home
> [E] rules Pattern Pattern
¥ (= store (addHypothesis &<modulePath> 'root) (parameterMap (valueH (loc &x Aarraylength)
Pmmodules @inputHeap))
TEshadows
T[Z|base1ine
bEleiomln Loop Action Action
v El ltsAWrap AddHypothesis ShadowParameter
v B clear(iv Substitution Substitution
¥ B parameters {not{ < &length of x" 10})

Elength of x
‘!Espec
Elength of x »=10
Ex is defined
b] tesuinz
PElﬁnd_negatiue
F[Z|ﬁrst’1‘ear€ode
Imjava
¥ J% Methed Population
Pﬂ<sh‘.‘.‘rap_test

Variahles Variahles

The specification of the main routine breaks out as two cases, depending on whether or not x[5] equals x[6]. The case x[5] equals x[6] is show below.
Observe that the "" signs are once again present, indicating that these values depend on loop output state, specification on the content of x that was
loaded by the loop execution. Technically, the assumptions are deduced by Mango, but since they derive from assumptions generated by the user, they
are still shown in green. The assumptions "x[5] equals x[6]" is in blue, since it depends on loop output state and therefore is a conjecture. In the past,

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango#bug7
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango#bug2
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango#writeRule

Mango generated proof artifacts for this conjecture, and a proof was generated by the ACL2 theorem prover. For some ideas that are still relevant, even
through the output is obsolete, see Local Forward Flow and Prototype Deductive System Currently, the pipeline to ACL2 is broken, see bug #6. This is an
area where contributions would be most welcome, as automated theorem proving is the long game.

Ef._, Problems ' Specification E Console " baseline.ltsAWrap.clear([lhV.lo
baseline. ltsAWrap.test([l)Z.cases.1

[+ input assumptions
X is defined
length of the Array x is greater than or equal to 1@
x[5]1* equals x[E]"

[* output state

[+ heap

heapt
Feturns boolean: true

Finally, observe that Mango generates the vacuous case X[5] does not equal x[6], even though it is impossible (see figure below). A conscientious could
introduce a shadow rule to falsify this case, but again, once automatic generation of loop termination hypotheses and automated theorem proving are
hooked up, this case will disappear automatically.

length of X ==10 length of x

Ef'._. Problems ' Specification El console ' baseline. ltsAWrap.clear([l) ' cle
baseline. ltsAWrap.test([l)Z.cases.2

[+ input assumptions
%x 1s defined
length of the Array x is greater than or equal to 18
x[5]* does not equal x[B]4

[* output state

[heap

Feturns boolean: false

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/archive/FourthExample
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/archive/FifthExample
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango#bug6

	ItsAWrap example, special considerations for loops
	ItsAWrap example, special considerations for loops

