
1

Native Resolution and Opaque Links

Mango now has the ability to treat unspecified methods as "black boxes". A black box returns "opaque" output. If a black box is passed references, then

the output heap has opaque heap values tied to these references. Rule-based reasoning about opaque return values and opaque heap values is still in

its infancy, but this part of the "Mango brain" is expected to grow quickly. What is in place, Mango now is the ability to track opaque values via nested

hyper-link display of state components.

Static data and unsoundness

The following example illustrates how static data access can result in unsound modeling, or not, as the case may be. This is a fact of life which must be

faced head on.

DiceRolls example

Consider the following source code. 

Notice there are two unspecified methods, the Random constructor and Random.nextInt(I)I. Instead of building the method population for main(), apply

"native resolution" from the context menu focussed on main().

The native resolution command inventories all unspecified methods which the target depends upon, and builds a "native specification" for each such

method. In our case, the upshot is that nextInt() will return an "opaque" number. To see how this works, consider the specification for the loop inside of

main:



2

The opaque values returned by nextInt() appear as the links "opaque return value" and "opaque return value_1". At this point, the alert reader must ask

the question, "since the input for nextInt is 6 in both cases, and nextInt is modeled functionally, how can it be that the two output values are distinct".

Excellent question! To see what is really going on here, lets trace the "history" of "opaque return value_1" via hyper-linking. Here is the result of clicking

on the link:

Not much information here, just telling use that our link resulted from composing the previous opaque value with the identity state. So lets dig a little

deeper by clicking on "opaque return value"



3

This is more interesting. We now know that our link resulting from some previous opaque value composed with (pstate ... 1). Ok, keeping that thought in

mind, lets click one more time:

Well, we have finally bottomed out. This is telling us that nextInt() returned an opaque value, end of story. So lets go back to that (pstate ... 1) expression.

The key "pstate" just means "permanent state", which can be looked up somewhere if there is a really compelling reason to do so. For our purpose, it

suffices to observe that if we repeat this entire experiment with the other opaque link of the loop specification, we end up with (pstate ... 0), as

demonstrated below.

Nutshell

In a nutshell, the links differ because the input state to the two different calls to nextInt() really were not the same after all. At the source code level, it

looks like 6, but the actual input state for the second call has been tainted by the output of the first call, and so really is not the same. Now you might say

this is an accident which could have easily come down against us if we were in fact modeling a genuine function with no side-effect resulting from a peek

at the static area, and you would be right.

Conclusion

In conclusion, rule-based reasoning about opaque values is open for business, and interesting!


	Native Resolution and Opaque Links
	Static data and unsoundness
	DiceRolls example
	Nutshell
	Conclusion


