
1

Slides and transcript for "Test Generation via Symbolic Execution" JPF-Workshop 2012

INTRO SLIDE

I am going to talk about Mango, an Eclipse plugin based on jpf-core. This plugin more-or-less automatically builds a formal model for targeted Java

source-code. Integration with the Eclipse platform allows this model to be visually navigated. Navigation to salient points in the model enables the

construction of patterns for rule-based vulnerability detection.

The talk is divided into parts. In the first part, a particular vulnerability is detected by the tool during model navigation. The training for this detection is

already a part of the tool. In the second part, model navigation is exploited to detect a different flavor of the vulnerability.

ab

A thrown exception may reveal a message. It is a security violation for that message to be confidential information such as social security numbers.

Observe in class A that the method badTest throws an exception, revealing the field x. Since the A.boo() routine sets x to harmless, sensitive information

is not revealed. The problem is possibility of a B.boo() method overriding A.boo(), which does in fact set x to a sensitive string. The model admits the

possibility of a B.boo() of unknown functionality. The model also knows that revealing information in a heap of unknown content via thrown exception is

unsafe. Let's see how this plays out during model navigation.

badTest

The picture shows the input assumptions and corresponding output state of ab. The variable links indicate the presence of unresolved cases. Lets click

on a link to resolve these cases.

badTest2

Oh my! Look at that! The model has already detected an unsafe access via the field x into a heap of unknown content. Lets dig a little deeper to see what

is happening.

badTest3

In the first case, we are calling A.boo, and accordingly Mango reports a safe exposure of the harmless string.

In the second case, we are call B.boo of unknown functionality. In this case, Mango reports the unsafe exposure of unknown heap content.

badTest4

Diving into the heap indicates it may contain unknown content related to B.boo.

This concludes the first part of the talk. Now lets consider training the tool for a new flavor of this vulnerability.

rawContact

scroll to toJsonObject

The Android Developer Kit contains exemplary code, such as this class RawContact within the SampleSyncAdapter project. Within RawContact is the

method toJsonObject, which stuffs field members into the constructed object. The issue is with the method Log.i(), which presumably logs content of

exceptions thrown by the put() method. For the purpose of the demo, Mango treats both Log.i() and put() as methods of unknown functionality. Moreover,

Log.i() is a concern because it has access to exception content and its putative purpose is to reveal this information in some manner. Therefore, we want

to train Mango to treat logging on a par with throwing information.

function

To do this, lets first look at the generic function for unknown output state. Notice the symbol pushH, this represents the heap.

pushH

We train Mango by modifying the pushH expression to contain the sub-expression (safeExposure @msg @inputHeap), which causes the input to Log.i

to fire against the safety rules. With this hook in place, we need to figure out exactly what safety rule to write.

scoll to EZtest

We start by abstracting the relevant features of toJsonObject in a simpler method, EZtest. Now this method is navigated just as badTest() was in the first

part of the talk. To expedite, let's cut to the chase.

2

capture1 DOCK

Oh My! Look at that! Mango has detected an unknown exposure status in heap item #7. What could that possible mean. Observe #7 corresponds to the

literal string found in the code base followed by a variable link representing the thrown exception content. Lets dig into this variable.

capture2 DOCK

Although somewhat cryptic, this variable is in fact the exception thrown by put, converted to a string. This is definitely an unsafe thing to expose. At this

point, we dive into the formal model to get the associated unknownExposure expression.

unknownExposure EDITOR WINDOW

This expression looks complicated, but the good news is most of the detail is irrelevant. We just want to capture the fact that an opaque reference is

being converted to a string. For example, the fact that this opaque method is called put() is unimportant, so we abstract the corresponding pathName. A

useful tool is the balance button, which selects closest parenthesis balanced text.

type opaqueMethodName

The next expression is the input state for put(), which can also be abstracted.

type methodInput.

And so this proceeds until a sufficiently general pattern is obtained. If overgeneralized, false positives will result, if undergeneralized, similar cases will be

reported with unknown exposure status. Either way, the rules can be repaired. So, as we train the tool, the tool trains us.

unsafeAccess EDITOR WINDOW

An example of a complete rule is from the training for part 1 of the talk. The pattern was made by the generalization of captured formal state, as we have

just seen. The introduced pattern variables are listed below. As a matter of style, these should indicate abstracted meaning, but logically arbitrary distinct

names would produce the same rule.

Observe the action, UnsafeAccessOpaqueHeap. This is just a tiny snipped of code extending the plugin, outside of the formal logic. Lets take a look at

that in the development platform.

unsafeAccessOpaqueHeap JUNO IN DOCK

All this code does is provide a title and safety message for the banner display corresponding to the security violation or warning.

LAST POWERPOINT SLIDE

http://babelfish.arc.nasa.gov/trac/jpf/ticket/7
http://babelfish.arc.nasa.gov/trac/jpf/ticket/7

	Slides and transcript for "Test Generation via Symbolic Execution" JPF-Workshop 2012

