
Wikiprint Book

Title: Mango

Subject: Java Path Finder - projects/jpf-mango

Version: 139

Date: 03/05/2013 03:43:57 AM

2

Table of Contents

Mango 3

Capability 3

Installation 3

Getting started 3

Examples 3

Users Manual 3

Bugs 3

Current Development 3

Contributing to Mango 3

History of Mango 3

3

Mango

Mango is a Java™ assurance tool, deployed as an Eclipse workbench plugin. Mango is developed as the jpf-mango extension of JPF.

Capability

Mango builds a functional model of Java code, exposed as navigable browser pages. When used as a sanity checker, Mango will halt at every

case-split, allowing the programmer to compare code versus model. The functional view of code is often quite different from the code itself, and

potentially reveals hidden flaws.

Mango may be of value as an educational tool. Those learning Java as a first programming language now have the opportunity to compare procedural

and functional views of code in real time. This comparison facilitates the exposition of formal modeling concepts. For this purpose, the Mango installation

contains a comprehensive set of first year Java code examples, together with the corresponding Mango formal models.

Mango may potentially be used to generate and apply filters for known Java security issues. Oracle has published a set of secure programming

 guidelines. Use these guidelines to write code snippets exposing potential security problems, apply Mango, and observe the corresponding formal

model. From such observations, and possible adjustments to the formal model, develop rules to recognize security issues. Mango has a highly

sophisticated rule-based generalized pattern matching capability to enable such rule development. This is currently an active area of Mango

development.

The Mango formal model may be translated into ACL2, an automated theorem proving language. In the past, formal proofs of Mango generated

conjectures have been accomplished. Mango was originally created for this purpose, and this direction represents the future. But in all honesty a lot of

work remains before tangible results may emerge. Anyone interested in pursuing this line of thought should contact the principle Mango developer,

frankrimlinger+mango at gmail.com.

Installation

Getting started

Examples

Users Manual

Bugs

Current Development

Contributing to Mango

History of Mango

jpf-mango

NEW! Case splits now enhanced with boolean semantics

Native Resolution and Opaque Links (DiceRolls)

Mango Eclipse plugin High School Code example (CarRecall)

Mango Eclipse plugin introductory demo

Mango paper for JPF Workshop 2011

Screen shot: Mango "wakes up" inside the Workbench

EclipseCon 2011 Slides and Transcript

Archived Examples

Purpose: To provide a case by case specification of Java™ source code, analogous to Javadoc but more rigorous. To provide "proof artifacts" to a

theorem prover, enabling the mathematical proof of code properties.

http://www.oracle.com/technetwork/java/index.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-2.htm
http://babelfish.arc.nasa.gov/hg/jpf/jpf-mango
http://babelfish.arc.nasa.gov/trac/jpf
http://en.wikipedia.org/wiki/Function_model
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango#firstYear
http://www.oracle.com/index.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.cs.utexas.edu/~moore/acl2/
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/booleanSplit
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/opaque
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/CarRecall
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/MangoIntro
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/MangoPaper
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/WakeUpCall
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/EclipseConSlides
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/archive

4

Ultimate Goal: To integrate the generation of code, specification, and correctness proofs so that a programmer may produce a more reliable product

with the same level of effort.

Theory of Operation: The code is first converted to a large graph of vertices (instructions) and directed edges (branch conditions), often referred to as

the flow control diagram. This conversion occurs at the byte code level, which is convenient because the byte codes are described very succinctly in

terms of the state of the Java Virtual Machine (JVM). This conversion is essentially accomplished by the JPF core engine. The Mango formal peer code

then generates for each byte code a description in terms of the Mango formal model. A graph subdivision algorithm is applied to the control flow,

generating a hierarchical sequence of graphs required to describe the loops within the code as recursive functions. JPF is then used to walk these

graphs for the purpose of generating the specification and proof artifacts. The backtracking ability of JPF is utilized to generate cases, and the ability to

trace back along trails is leveraged in order to compute loop invariants. Ideally, the process would be fully automated, but in practice when Mango

requires guidance from the user, JPF will block and a gui thread will interact with the user to obtain the information required to proceed. The specification

and proof artifacts are stored in persistent form exposed to the user in a rule base format, enabling reuse and incremental, distributed operation.

Limitations: Mango only specifies "good" cases, exposing input constraints required to satisfy such cases. Some user guidance is required to

determine what constitutes a good case. It may happen that even the number of good cases grows exponentially. The user must then provide case

generalization logic to abstract away explosive case growth. Such abstractions must also be accompanied by type and translation logic, which the user

must provide. Although Mango does generate loop termination conjectures, such conjectures are generally in terms of loop output. Typically the user

must provide guidance to form hypotheses for loop termination in terms of loop inputs. Correctness of such hypotheses may be confirmed by an

automated theorem prover, which typically requires expert guidance.

Status: Mango is based on technology released by the Nasa/Ames Software Release Authority in September, 2008. Much of the original code base

was written in C++. By Spring, 2009, the code base was migrated to 100% pure Java, and integrated with Eclipse RCP, the rich client platform. The

original code base did not use JPF. Full integration with JPF commenced in the Summer of 2009 and should be complete by January 2010. The tool

should achieve an initial operational capability by Spring 2010. Ultimately, the tool will be deployed as an Eclipse workbench plugin.

Research: Previous versions of the tool did generate artifacts for the ACL2 theorem prover and substantial proofs were accomplished. Efforts are just

getting started to lightly embed the current Mango model in ACL2. However, the proof artifacts are essentially just expressions in the Mango model of

definitions, hypotheses and conjectures, and as such are theorem prover neutral. There is no automatic facility for generation of hypotheses on loop

inputs required to prove termination. Needless to say, this is a fundamental tool weakness and contributions in this area would be most welcome.

(Caveat emptor: there is no general purpose algorithm for determining loop termination, but constructive solutions exist for typical circumstances.)

(Jan 9, 2012) An alpha version of the Eclipse plugin should be released in Feb, 2012. The update site is

http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/jpf-mango/update/

	Mango
	Capability
	Installation
	Getting started
	Examples
	Users Manual
	Bugs
	Current Development
	Contributing to Mango
	History of Mango

