
Wikiprint Book

Title: Mango

Subject: Java Path Finder - projects/jpf-mango

Version: 139

Date: 03/03/2013 04:57:45 PM

2

Table of Contents

Mango 3

Capability 3

Installation 3

System requirements 3

Installing the Mango plugin 3

Installing the Mango development platform 4

Getting started 4

Examples 4

Users Manual 4

Bugs 4

Current Development 4

Contributing to Mango 5

History of Mango 5

3

Mango

Mango is a Java™ assurance tool, deployed as an Eclipse workbench plugin. Mango is developed as the jpf-mango extension of JPF.

Capability

Mango builds a functional model of Java code, exposed as navigable browser pages. When used as a sanity checker, Mango will halt at every

case-split, allowing the programmer to compare code versus model. The functional view of code is often quite different from the code itself, and

potentially reveals hidden flaws.

Mango may be of value as an educational tool. Those learning Java as a first programming language now have the opportunity to compare procedural

and functional views of code in real time. This comparison facilitates the exposition of formal modeling concepts. For this purpose, the Mango installation

contains a comprehensive set of first year Java code examples, together with the corresponding Mango formal models.

Mango may potentially be used to generate and apply filters for known Java security issues. Oracle has published a set of secure programming

 guidelines. Use these guidelines to write code snippets exposing potential security problems, apply Mango, and observe the corresponding formal

model. From such observations, and possible adjustments to the formal model, develop rules to recognize security issues. Mango has a highly

sophisticated rule-based generalized pattern matching capability to enable such rule development. This is currently an active area of Mango

development.

The Mango formal model may be translated into ACL2, an automated theorem proving language. In the past, formal proofs of Mango generated

conjectures have been accomplished. Mango was originally created for this purpose, and this direction represents the future. But in all honesty a lot of

work remains before tangible results may emerge. Anyone interested in pursuing this line of thought should contact the principle Mango developer,

frankrimlinger+mango at gmail.com.

Mango was presented as a "formal advisor" at the 2011 JFP Workshop. The paper A Formal Advisor for Eclipse Java Development and corresponding

slides give a technical overview of Mango.

Installation

To use Mango, it is only necessary to install the plugin. Certainly this will suffice for learning the basic operation of Mango. Actual application of Mango to

a real project will probably require the feedback and flexibility of the Mango development platform. The recommendation at this point is to first install the

plugin to learn the Mango basics, and then switch to the development platform for more serious work.

System requirements

The plugin and development platform for Mango have been tested on the most current versions, as of April 27, 2012, of MacOSX, RedHat, and

Ubuntu, using the latest release of the Eclipse workbench, Indigo. Mango should run anywhere the Eclipse workbench can be installed, assuming

the underlying file system has Unix-like capabilities. Unfortunately, on Windows there is a hard limit of 260 characters on the length of a path

name, which currently is a show-stopper for Mango. Mango relies on internals of jpf-core and the Eclipse platform itself, and these change over

time, requiring changes in Mango. Every reasonable attempt will be made to keep Mango compatible with previous versions of its own database

structure, but no guarantees. The plan is for active Mango development to support the most recent versions of jpf-core and the Eclipse workbench

running on MacOSX, RedHat, and Ubuntu. However, the project is officially provided "as is", see the license for details.

Installing the Mango plugin

1. Install the most recent version of the Eclipse Workbench from the Eclipse downloads page. Mango is explicitly developed with the "Eclipse for RCP

and RAP Developers" package, but there are no known conflicts with other packages. If you plan to install Mango into an existing Workbench,

consider using a new workspace, at least until you have confidence in the stability of the plugin.

2. Switch to the Java perspective of the Eclipse Workbench.

• 3. Install the Mango plugin at update site http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/jpf-mango/update/

1. Go to Help>"Install new Software..."

2. Enter http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/jpf-mango/update/ in the "Work with: " box and hit carriage return, do not

press the "Add..." button.

3. Check the box next to "Mango" when it appears in the window. Hit "Next>".

4. The feature version will display. Hit "Next>".

5. License terms must be accepted to acquire the plugin. If acceptable, select "I accept ..." and hit "Finish".

6. There will be an "unsigned content" security warning. Mango is still developing and there is no content security. Hit "OK".

7. Hit "Restart Now". Mango currently will not install hot, as this leads to window rendering errors.

http://www.oracle.com/technetwork/java/index.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-2.htm
http://babelfish.arc.nasa.gov/hg/jpf/jpf-mango
http://babelfish.arc.nasa.gov/trac/jpf
http://en.wikipedia.org/wiki/Function_model
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango#firstYear
http://www.oracle.com/index.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.cs.utexas.edu/~moore/acl2/
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/events/workshop2011
http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/events/events/workshop2011/RimlingerMango_sub.pdf
http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/events/events/workshop2011/RimlingerMango.ppt
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/license
http://www.eclipse.org/downloads/

4

• 4. Upon reboot of Eclipse, the "Mango Explorer" and "Specification" views should appear in the java perspective. If these views do not appear or have

been closed, they can always be recovered as follows (see figure below):

1. Go to Window>"Show View">Other... and open the "Mango" folder.

2. Double-click on "Mango Explorer". The "Mango Explorer" view will appear in the java perspective.

3. Repeat step a, and double-click on "Specification". The "Specification" view will appear in the java perspective.

1. Recommendation: Drag the "Mango Explorer" tab so that both "Package Explorer" and "Mango Explorer" views are visible, next to each other (see

figure below). If you have never moved views around before by dragging their tabs, this will require some experimentation. You can always go to

Window>"Reset Perspective..." if things don't work out on the first try.

Installing the Mango development platform

The Mango development platform allows you to extend Mango functionality and/or fix bugs. If you are new to Mango, you may wish to go directly to

Getting Started.

1. Install the most recent version of Mercurial.

2. Install the Mercurial Eclipse plugin into the Eclipse workbench. The site for this plugin is http://cbes.javaforge.com/update

3. Add the jpf-core and jpf-mango projects.

1. Go to File>New>"Project..."

2. Open the Mercurial folder. Select "Clone Existing Mercurial Repository". Hit "Next".

3. Enter the URL: http://babelfish.arc.nasa.gov/hg/jpf/jpf-core Hit "Next".

4. The default directory revision will appear in the window. Hit "Next".

5. The "Import Projects" window will appear. Hit "Finish".

6. The jpf-core project now appears in the Package Explorer. Observe the project build messages in the console. If there is an indication that

javac cannot be found, then the build has failed. The other possible error messages are normally harmless. If javac cannot be found, it is

probably an installation problem with java or a failure to set the proper environment variables. Googling for instructions particular to your

operating system should yield a solution.

7. Repeat steps a-e for jpf-mango, using the URL http://babelfish.arc.nasa.gov/hg/jpf/jpf-mango. Sometimes jpf-core and jpf-mango get out of

sync, and sometimes the most current version of jpf-mango is unstable. In this case, the Mercurial commit notes for jpf-mango at

http://babelfish.arc.nasa.gov/hg/jpf/jpf-mango should be consulted.

• 5. You must now set up the runtime for the Mango development platform. Click on "Launch an Eclipse application in Debug mode".

1. In the jpf-mango project, locate "META-INF/MANIFEST.MF" and open this file in an editor (see figure below).

1. The Mango development platform will open. This is just an Eclipse application which recognizes the jpf-mango project as on of its plugins. You can

set break-points in the jpf-mango project, and the Eclipse debugger in the base Workbench will honor them as the development platform runs. This is

the manner in which Mango is developed.

2. You may need to switch to the Java perspective and adjust the Mango views as in step 5 of the Mango plugin installation.

3. Close the Mango development platform. Henceforth, use the "Debug as..." icon to launch the development platform (see figure below).

• 4. The final step is to add the MangoHome and MangoSystem projects. If you have already installed the plugin and built a specification, then versions

of these projects already exist in the Eclipse workspace. However, these versions may not be in sync with the current jpf-mango project. Therefore, it

is always best to get fresh versions from this site.

1. At the bottom of this site, expand "Attachments". Double-click on "MangoNucleus.zip" and then on "downloading".

Getting started

Examples

Users Manual

Bugs

Current Development

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango#GettingStarted
http://mercurial.selenic.com/wiki/Download
http://javaforge.com/project/HGE

5

Contributing to Mango

History of Mango

jpf-mango

NEW! Case splits now enhanced with boolean semantics

Native Resolution and Opaque Links (DiceRolls)

Mango Eclipse plugin High School Code example (CarRecall)

Mango Eclipse plugin introductory demo

Mango paper for JPF Workshop 2011

Screen shot: Mango "wakes up" inside the Workbench

EclipseCon 2011 Slides and Transcript

Archived Examples

Purpose: To provide a case by case specification of Java™ source code, analogous to Javadoc but more rigorous. To provide "proof artifacts" to a

theorem prover, enabling the mathematical proof of code properties.

Ultimate Goal: To integrate the generation of code, specification, and correctness proofs so that a programmer may produce a more reliable product

with the same level of effort.

Theory of Operation: The code is first converted to a large graph of vertices (instructions) and directed edges (branch conditions), often referred to as

the flow control diagram. This conversion occurs at the byte code level, which is convenient because the byte codes are described very succinctly in

terms of the state of the Java Virtual Machine (JVM). This conversion is essentially accomplished by the JPF core engine. The Mango formal peer code

then generates for each byte code a description in terms of the Mango formal model. A graph subdivision algorithm is applied to the control flow,

generating a hierarchical sequence of graphs required to describe the loops within the code as recursive functions. JPF is then used to walk these

graphs for the purpose of generating the specification and proof artifacts. The backtracking ability of JPF is utilized to generate cases, and the ability to

trace back along trails is leveraged in order to compute loop invariants. Ideally, the process would be fully automated, but in practice when Mango

requires guidance from the user, JPF will block and a gui thread will interact with the user to obtain the information required to proceed. The specification

and proof artifacts are stored in persistent form exposed to the user in a rule base format, enabling reuse and incremental, distributed operation.

Limitations: Mango only specifies "good" cases, exposing input constraints required to satisfy such cases. Some user guidance is required to

determine what constitutes a good case. It may happen that even the number of good cases grows exponentially. The user must then provide case

generalization logic to abstract away explosive case growth. Such abstractions must also be accompanied by type and translation logic, which the user

must provide. Although Mango does generate loop termination conjectures, such conjectures are generally in terms of loop output. Typically the user

must provide guidance to form hypotheses for loop termination in terms of loop inputs. Correctness of such hypotheses may be confirmed by an

automated theorem prover, which typically requires expert guidance.

Status: Mango is based on technology released by the Nasa/Ames Software Release Authority in September, 2008. Much of the original code base

was written in C++. By Spring, 2009, the code base was migrated to 100% pure Java, and integrated with Eclipse RCP, the rich client platform. The

original code base did not use JPF. Full integration with JPF commenced in the Summer of 2009 and should be complete by January 2010. The tool

should achieve an initial operational capability by Spring 2010. Ultimately, the tool will be deployed as an Eclipse workbench plugin.

Research: Previous versions of the tool did generate artifacts for the ACL2 theorem prover and substantial proofs were accomplished. Efforts are just

getting started to lightly embed the current Mango model in ACL2. However, the proof artifacts are essentially just expressions in the Mango model of

definitions, hypotheses and conjectures, and as such are theorem prover neutral. There is no automatic facility for generation of hypotheses on loop

inputs required to prove termination. Needless to say, this is a fundamental tool weakness and contributions in this area would be most welcome.

(Caveat emptor: there is no general purpose algorithm for determining loop termination, but constructive solutions exist for typical circumstances.)

(Jan 9, 2012) An alpha version of the Eclipse plugin should be released in Feb, 2012. The update site is

http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/jpf-mango/update/

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/booleanSplit
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/opaque
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/CarRecall
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/MangoIntro
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/MangoPaper
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/WakeUpCall
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/EclipseConSlides
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-mango/archive

	Mango
	Capability
	Installation
	System requirements
	Installing the Mango plugin
	Installing the Mango development platform

	Getting started
	Examples
	Users Manual
	Bugs
	Current Development
	Contributing to Mango
	History of Mango

