Developing shells with jpf-shell

What exactly is a shell and what does it do and not do?

A shell really boils down to being nothing more than a swing app that can be launched from within jpf. Inside of the JPF.main(String[] args) function after
a Config object is created and fully evaluated JPF checks if the "shell" property is set. If the "shell" property is set and points to a class that implements
the JPFShell interface then an instance of it is constructed through a constructor that takes only a Config object. (This is the same config that jpf already
created). Then the "start(String[] args)" method (the only method defined in JPFShell interface) is run and JPF.main(String[] args) is done leaving
everything in the hands of the shell.

Where jpf-shell comes in

jpf-shell serves as a starting point for developing your shell. THe handful of classes found in the "gov.nasa.jpf.shell" package make up a running instance
of jpf-shell.
Here are some fundamental design ideas to keep in mind, all of these classes are meant to be subclassed:

gov.nasa.jpf.shell.ShellCommand
« Actually does work with the execute() method. (ie: Running JPF, Running the System Under test)
« Listeners can be attached to any ShellCommand to execute before and after they execute()
« ShellCommands are added to the ShellManager
¢ ShellCommands are fired through ShellManager.fireCommand()
gov.nasa.jpf.shell.ShellPanel
« extends JPanel
« Displayed by subclasses of gov.nasa.jpf.shell.Shell
gov.nasa.jpf.shell.Shell
« Extends JFrame and is displayed to the user
* Holds a group of panels
« Is responsible to display ShellCommands to the user
gov.nasa.jpf.shell.ShellManager
« Holds the following:
¢ All ShellCommands
¢ All ShellCommandListeners
¢ All Shells
¢ The Config object
* A Singleton class, only 1 exists and only one 1 is set for the lifetime of the JVM

* Responsible for 1/0O, error logging and communicating with IDEs.
Customizing

How do | make a new ShellCommand?

This example will create a new "HelloWorld" command and use the BasicShell as the Shell implementation. The culmination of this example can be
found in the 'example/commands’ folder in the jpf-core project.

1. Create a java class that extends ShellCommand like the following:

public class Hell owrl dCommand extends Shel | Command{

@verride
public void execute() {

JOpt i onPane. showMessageDi al og(nul I, , ,
JOpt i onPane. | NFORVATI ON_MESSAGE) ;

1. Extend BasicShell to create a new shell that will add our custom command to the ShellManager

public class Hell oWwrl dCommandShel | extends Basi cShel | {

public Hel | oWwr| dCommandShel | (Config c){
super (c);

@verride
protected voi d addComands() {
super . addConmands() ;
Shel | Manager . get Manager () . addConmand(new Hel | oWbr | dComrand()) ;

. Add our new shell as the 'shell’ property in our configuration.

shel | =commands. Hel | oWor | dCommandShel |

	Developing shells with jpf-shell
	What exactly is a shell and what does it do and not do?
	Where jpf-shell comes in
	Customizing
	How do I make a new ShellCommand?

