
1

Developing shells with jpf-shell

What exactly is a shell and what does it do and not do?

A shell really boils down to being nothing more than a swing app that can be launched from within jpf. Inside of the JPF.main(String[] args) function after

a Config object is created and fully evaluated JPF checks if the "shell" property is set. If the "shell" property is set and points to a class that implements

the JPFShell interface then an instance of it is constructed through a constructor that takes only a Config object. (This is the same config that jpf already

created). Then the "start(String[] args)" method (the only method defined in JPFShell interface) is run and JPF.main(String[] args) is done leaving

everything in the hands of the shell.

Where jpf-shell comes in

jpf-shell serves as a starting point for developing your shell. THe handful of classes found in the "gov.nasa.jpf.shell" package make up a running instance

of jpf-shell.

Here are some fundamental design ideas to keep in mind, all of these classes are meant to be subclassed:

gov.nasa.jpf.shell.ShellCommand

• Actually does work with the execute() method. (ie: Running JPF, Running the System Under test)

• Listeners can be attached to any ShellCommand to execute before and after they execute()

• ShellCommands are added to the ShellManager

• ShellCommands are fired through ShellManager.fireCommand()

gov.nasa.jpf.shell.ShellPanel

• extends JPanel

• Displayed by subclasses of gov.nasa.jpf.shell.Shell

gov.nasa.jpf.shell.Shell

• Extends JFrame and is displayed to the user

• Holds a group of panels

• Is responsible to display ShellCommands to the user

gov.nasa.jpf.shell.ShellManager

• Holds the following:

• All ShellCommands

• All ShellCommandListeners

• All Shells

• The Config object

• A Singleton class, only 1 exists and only one 1 is set for the lifetime of the JVM

• Responsible for I/O, error logging and communicating with IDEs.

Customizing

How do I make a new ShellCommand?

This example will create a new "HelloWorld" command. This will use the BasicShell as the Shell implementation. The culmination of this example can be

found in the 'example/commands' folder in the jpf-core project.

1. Create a class that extends ShellCommand:

public class HelloWorldCommand extends ShellCommand{

 @Override

 public void execute() {

 // Do whatever you want here

 JOptionPane.showMessageDialog(null, "Hello, world!", "Hello from jpf-shell",

 JOptionPane.INFORMATION_MESSAGE);

 }

}

1. Subclass BasicShell to create a new shell that will add our custom command to the ShellManager

2

public class HelloWorldCommandShell extends BasicShell{

 public HelloWorldCommandShell(Config c){

 super(c);//The Shell Constructor that takes a Config as an argument makes sure

 //to create a ShellManager for us.

 }

 @Override

 protected void addCommands(){

 super.addCommands(); //Add on all of the commands that BasicShell wants

 ShellManager.getManager().addCommand(new HelloWorldCommand());

 }

}

1. Add our new shell as the 'shell' property in our configuration.

shell=commands.HelloWorldCommandShell

How do I make a new ShellPanel?

This example will create a new "HelloWorld" command. This will use the BasicShell as the Shell implementation. The culmination of this example can be

found in the 'example/commands' folder in the jpf-core project.

1. Create a class that extends ShellPanel:

class HelloWorldPanel extends ShellPanel{

 public HelloWorldPanel(){

 super("Hello, World", null, "Click me!");

 add(new JLabel("Hello, World!"));

 }

}

1. Subclass BasicShell to add the HelloWorldPanel as one of our "DesiredPanels"

public class HelloWorldPanelShell extends BasicShell{

 public HelloWorldPanelShell(Config c){

 super(c);//The Shell Constructor that takes a Config as an argument makes

 //sure to create a ShellManager for us.

 }

 @Override

 protected List<ShellPanel> getDesiredPanels(){

 List<ShellPanel> panels = super.getDesiredPanels();

 panels.add(new HelloWorldPanel());

 return panels;

 }

}

1. Set this class to be our shell in the "shell" property for jpf

shell=panels.HelloWorldPanelShell

	Developing shells with jpf-shell
	What exactly is a shell and what does it do and not do?
	Where jpf-shell comes in
	Customizing
	How do I make a new ShellCommand?
	How do I make a new ShellPanel?

