Trace Server user guide

A JPF extension for storing the execution trace, by Igor Andjelkovic and Cyrille Artho.
For any information or to report problems, please contact:

Igor Andjelkovic <igor.andjelkovic "at" gmail.com>
Contents

Description
* Trace Emitter

* Trace Filter
e Trace Query

e Trace Analyzer
Trace Printer

* Console Trace Printer

* Generic Console Trace Printer

« Trace Report Shell Panel

* How to download

* How to build

+ Installation

* Running trace server
* Running tests

* Repository

* Trace Server as part of the JPF Summer Projects

* Acknowledgments

Description

During the execution of the SUT (System Under Test), JPF generates trace that consists of executed instructions and is kept in memory, competing with
SUT heap and state storage. Production code SUT, can create trace that contain millions of steps (I nst r uct i on objects). The trace cannot be
augmented with custom properties, nor trace output can be changed. In order to store custom trace data, one has to implement

gov. nasa. j pf. Li st ener, create its own data structure and deal with state backtracking and restoration. Trace analysis is only possible "on-the-fly",
i.e. when JPF is still running.

One possible solution of the problem described above is to configure atrace server interface that can listen on all JPF notifications (events) and
stores them in a database. Once such database is created, post mortem analyzers can be used to find out about defects etc. Listeners like the

Deadl ockAnal yzer really should be implemented that way, since there is no need to run them while JPF is still searching for a deadlock. Post mortem
analyzers does not only speed up JPF in the first place, but also avoid having to re-run JPF on a large system under test if you need to try several trace
analyzers. JPF extensions would also benefit from the ability to augment traces with their custom information. The Trace Server framework should
therefore be extensible enough to allow listeners to augment a trace with extra data.

Trace Server consists of several building blocks, shown at the picture below:

single run multiple runs (post mortem)
trace server

|| trace | | trace trace | frace [< trace 1 _ report
|| emitter 1 filter storer | | query »| analyzer i
| listener : e
i I ¥ o
+ execution engine « transition caching * post mortem trace analysis
» property checks » trace storage * report generation
* state matching, » query interface (enumeration)

storage, backtracking

http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Description
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceEmitter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceFilter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceQuery
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceAnalyzer
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TracePrinter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#ConsoleTracePrinter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#GenericConsoleTracePrinter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceReportShellPanel
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Howtodownload.
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Howtobuild.
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Installation
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#RunningTraceServer.
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Runningtests.
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Repository
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceServeraspartoftheJPFSummerProjects
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Acknowledgments
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/listener

Trace Emitter

The entry point of the system is the Trace Emitter. It is responsible for system initialization and starting, and is an interface between JPF and the rest of
the system.

The system can be configured by providing the following parameters to the used . j pf configuration file, e.g r unTr aceSer ver . j pf:

trace emtter class, nust be provided in order to store the trace
|'i stener=gov. nasa.jpf.traceEnm tter.Default TraceEm tter

database location (folder), it will be created if it doesn't already exist.

not used when trace_storer is not persistent, like "inMenory"

it can be omtted, default value is "db", so database will be created in the current folder
traceServer.db_|l ocati on = dbTrace

use local (true) or renote(fal se) trace server
default value is "true"
traceServer.|local _storer = true

trace storer type, "inMenory" or "neo4j"
default value is "neo4j"
traceServer.trace_storer = inMenory

can be used to start recording when SUT nain() nmethod is called
initial instructions will be skipped

default value is "true"

traceServer.skip_init = true

renote server's nanme, not used when trace storer is |ocal
default value is "local host"
traceServer. host = | ocal host

renote server's port nunber, not used when trace storer is |ocal
default value is "4444"
traceServer.port = 4444

Trace emitter isresponsible for creating event based on notifications from JPF listener. The base t race emni tter stores only events that are
necessary for creating the trace structure. In order to add more events to the trace, one has to extend the

gov. nasa.jpf.traceEnmitter. TraceEni tter and override the appropriate methods inherited from JPF listener interface. For example,

Obj I nsnEmi tter allowsinstructi onExecut e and obj ect Locked events to be stored:

public class ObjInsnEmtter extends TraceEmitter {

public QojlnsnEnmitter(Config config, JPF jpf) {
super (config, jpf);

public void instructionExecuted(JVM vn) {
Instruction insn = vm getLastlnstruction();
/1 we are skipping init instructions
/1 recording starts when nain() is called

Met hodl nfo mi = insn. get Met hodl nfo();
if (skiplnit) {
if (m == miMin) {
skiplnit = false; // start recording
} else {

return; // skip

}
Event event = this.createlnstructionEvent(insn, m,
event Type. i nstructi onExecut ed) ;

event . addPr operty(PropertyCol | ecti on. | NSTRUCTI ON_SOURCE_LI NE,
getLineString(insn));

/1 redefine the default value for property | NSTRUCTI ON_OPCCDE

/'l PropertyCol |l ection represents predefined collection of PropertylD objects
event . addProperty(PropertyCol | ection. | NSTRUCTI ON_OPCODE, insn.toString());
traceFilter.processEvent (event, eventType.instructi onExecuted);

public void objectlLocked(JVMvm) {
Event event = this.createObjectEvent(vm eventType. objectLocked);
event . addPr operty(PropertyCol | ecti on. THREAD | D, vm get Last Threadl nfo(). getlndex());
traceFilter.processEvent (event, type);

Base trace emitter provides cr eat eEvent methods for creating events that have to be initialized with default set of properties. A property is added to
event by calling event . addPr operty() and providing property id (represented with the Pr opert yl D class) and property value (Java primitive or
String types are allowed). To use Obj | nsnEmi tter, replace | i st ener =gov. nasa.j pf.traceEm tter. Defaul t TraceEnm tter with

|i stener=gov. nasa. j pf.traceEm tter. Defaul t TraceEni tter inthe above defined .jpf file, since only one trace emitter is allowed. (You can
have as many other listeners as you want.)

Trace Filter

As seen above, trace emitter usestrace filter toprocess each event. A filter is capable of forwarding events in the same way they are received.
It can then act as an emitter to another trace filter, or a trace storer, allowing pipelining multiple trace storers. Tr aceFi | t er is implemented as a Chain
of Responsibility design pattern. If the filter wants to filter out events, it does so by not forwarding data down the chain. Thus, the chain will break, and
event will be discarded. For example, to write | nst ructi onFi | t er that filters all i nst r uct i ons except for NEWones, one needs to extends
TraceFi | t er and override pr ocessl nst ruct i onExecut ed (to filter any other event type, just override corresponding pr ocess method):

public class ConsolePrintFilter extends TraceFilter {
public void processlnstructi onExecut ed(Event event) {
String insnOpcode = (String) event.getProperty(PropertyCollection.| NSTRUCTI ON_OPCODE) ;
if (insnOpcode. equal s("new") {
forward(event, eventType.instructi onExecuted);

To register | nstructi onFi | t er add this snippet to the . j pf defined above:

add trace filter classes (full nane required)
traceServer.trace_filter=gov. nasa.jpf.exanple.lnstructionFilter

Since trace emitter communicates only with the trace filter, the trace filter is responsible for forwarding events to the trace storer. This is done
automatically by the system. In order to use more than one trace storer, one needs to add t r aceSer ver . addi ti onal _trace_st or er s property,
and the system will handle that automatically (by using Gener al Tai | TraceFi |l ter):

add nore trace storers (different than the traceServer.trace_storer val ue)
traceServer. addi ti onal _trace_storers=neo4j

Trace Query

We have the database, so we need the query mechanism to pull the interesting data from it. Tr aceQuer y provides database independent query API,
for querying, among others, the | ast pat h, all the paths that ended and for querying the entire event space. To do that, one would have to provide a
TracePr edi cat e, which will be called upon to decide whether currently processed event from the trace should be included in the result. For example,
to query for obj ect Locked and obj ect Unl ocked events only, one should write:

TracePredi cate predicate = new TracePredicate() {
public boolean filter(Event currentEvent) {
Event Types. event Type eType = current Event. get Event Type();

switch (eType) {
case obj ect Locked:
case obj ect Unl ocked: {
return true;

}

return false;

}

I

/1 don't invert the events in the result
bool ean reversePath = fal se;

Eventlterator path = query. getlLastPath(predicate, reversePath);

for (Event event : path) {

Trace Analyzer

The whole system is designed for trace data analysis. The trace analyzer should query the database, do some analysis and report the results. Currently,
each analyzer can define its own reporting mechanism, or can use trace printer.

public class Exanpl eAnal yzer extends TraceAnal yzer {

private void analyzeAll() { ... }
private void analyzeThreads() { ... }
private void analyzeMethods() { ... }

/1 analyze only the "NEW instructions,
/1 and print the result if some condition is satisfied
private void anal yzelnstructions() {
TracePredi cate predi cate = new TracePredicate() {
public boolean filter(Event currentEvent) {
return currentEvent. get Event Type() == Event Types. event Type. i nstructi onExecut ed;
}
b

/1 don't invert the events in the result
bool ean reversePath = fal se;
Eventlterator path = query. getlLastPath(predicate, reversePath);

for (Event event : path) {
String opcode = (String) event.getPropety(PropertyCollection. | NSTRUCTI ON_OPCCDE) ;
if (opcode.equal s("new') && ...) {
System out. println(event.getPropety(...));

/] start the analysis
/1 what woul d be anal yzed depends on how the anal yzer was confi gured
public void analyze() {
query.start TraceQuery();
if (format.equal s(I NSTRUCTIONS)) {
anal yzel nstructions();
} else if (format.equal s(METHODS)) {
anal yzeMet hods() ;
} else if (fornat.equal s(THREADS)) {
anal yzeThr eads() ;
} else {

anal yzeAl |l ();

}
query. stopTraceQuery();

/'l configure the analyzer with sone paraneters
/1 for this analyzer, we have the type of analysis that is going to be perforned
public void configureAnal yzer(Qbject... args) {
if (args.length > 0) {
format = (String) args[O0];
} else {
format = ALL;

Trace analysis may be performed during the execution (on-the-fly) or post-mortem, after the program has terminated. To use it on-the-fly, one needs to
add:

trace query that analyzers will be use to query the database
"inMenory" are "neodj" are the possible choices, default is "inMenory"
traceServer.trace_query=i nMenory

add trace analyzers (full name required)
traceServer.trace_anal yzer =gov. nasa. j pf . exanpl e. Exanpl eAnal yzer

provides paraneters for the analyzers
traceServer.trace_anal yzer. parans=i nstructions

Trace Printer
We have the execution trace, we know how to query it for various information, we can analyze the data, the only thing we left is the printing.
Console Trace Printer

Consol eTr acePri nt er prints the new trace in old JPF's printer fashion. The main difference is that the new printer can print custom data added to the
trace, by defining Pr opertyCol | ecti on. TRACE_EXTRA_DATA property for each event that one would like to augment with extra data. The extra data
will be printed right after the default event's data is printed. Console printer configuration parameters are:

register console trace printer as a publisher

report. publisher=consol eTracePrinter

report.consol eTracePrinter. cl ass=gov. nasa.j pf.traceServer. printer. Consol eTracePri nter
print trace when property is violated

report.consol eTracePrinter. property_viol ati on=out put, trace

Show the steps frominside the transition. Default is true.
report.consol eTracePrinter.show_steps=true

Show the source code for executed instruction (line + |ocation).
Default is true.
report.consol eTracePrint er. showSour ce=true

Show the instruction location fromthe source file. Used only if
showLocation is set to true. Default is true.
report.consol eTracePrinter.showLocati on=true

Show the nethod name and the instruction opcode.
Default is false.

report.consol eTracePrint er. showCode=t r ue

Show the nethod name. Used only if {@ink #showLocation} is set to true.

Default is false.
report.consol eTracePrint er. showMet hod=t rue

Show the choi ce generator information for transitions.
Default is true.
report.consol eTracePrinter. showCG=t rue

Show the extra data added to trace by using
PropertyCol | ecti on. TRACE_EXTRA _DATA property. Default is true.
report.consol eTracePri nt er. showkxt r aDat a=t r ue

If you run the trace server with the new consol e pri nt er, and above parameters, output snippet might look like this:

-- transition #5 thread: 2
gov. nasa. j pf.jvm choi ce. Thr eadChoi ceFronSet {Thread-0, >Thr ead- 1}

ol dcl assi c. java: 123 : count = event2.count; /1 <race> violates event2 nonitor encapsul ation
SecondTask. run()V
getfield
putfield
ol dcl assic.java: 126 : Systemout.printin(" 2");
getstatic
I dc
i nvokevirtual java.io.PrintStream println(Ljava/lang/String;)V
ol dcl assi c. j ava: 127 : eventl.signal _event(); /1 updates event1.count
al oad_0
getfield

i nvokevirtual Event.signal _event()V

If trace emitter is used that will add Syst em out . pri ntl n() arguments to the trace by using the Pr opert yCol | ecti on. TRACE_EXTRA_DATA
property, the same path that shown above would look like this:

-- transition #5 thread: 2
gov. nasa. j pf.jvm choi ce. Thr eadChoi ceFronSet {Thread-0, >Thr ead- 1}

ol dcl assic.java: 123 : count = event2.count; /| <race> violates event2 nonitor encapsul ation
SecondTask. run()V
getfield
putfield
ol dcl assic.java: 126 : Systemout.printin(" 2");
getstatic
I dc
i nvokevirtual java.io.PrintStream println(Ljava/lang/String;)V
on
ol dcl assi c.j ava: 127 : event1.signal _event(); /1 updates event1.count
al oad_0
getfield

i nvokevirtual Event.signal _event()V

The System out . printl n() argument (in this case " 2") is printed right after the i nvokevi rt ual instruction.
Generic Console Trace Printer
Provides a more powerful printing mechanism. It extends Consol eTracePri nt er, but it uses TracePri nt er to print the trace.

TracePri nt er provides different printer for every group of events (see
gov. nasa. j pf.traceServer.traceStorer. Event Types. event G oupType for more details). To configure trace printer, add following

parameters:

regi ster genericConsol eTracePrinter as a publisher

report. publisher=generi cConsol eTracePrinter

report.genericConsol eTracePrinter.class=gov. nasa.jpf.traceServer. printer. Generi cConsol eTracePrinter
report.genericConsol eTracePrinter. property_viol ati on=out put,trace

print instruction events
traceServer.tracePrinter.instruction.show=true

don't add extra data to the output
default value is true for all event types
traceServer.tracePrinter.instruction.printExtraData=fal se

print object events
traceServer.tracePrinter.object.show=true
print thread events
traceServer.tracePrinter.thread. show=true

To print event group, one must settraceServer.tracePrinter. event Type. showtot rue, where event Type is type from event G oupType.
Each event printer can be replaced by extending the Event Pri nt er, base printer class. The new printer have to be registered in order to be used within
trace printer,by setting the t raceSer ver. tracePri nt er. event Type. cl ass parameter, where event Type is type from event G oupType:

traceServer.tracePrinter.object.class=gov. nasa.|pf.traceServer. extensi ons. Newbj ect Printer

Output example from the NewObj ect Pri nt er that prints location of object's initialization (trace printer is configured to print instruction events as well):

instructi onExecut ed
ol dcl assi c.java: 130
SecondTask. run()V
i nvokevirtual Event.wait_for_event()V
obj ect Locked
291 # LEvent; # init at: oldclassic.java: 48
instructi onExecut ed
ol dcl assi c. java: 79
Event.wait_for_event()V
al oad_0
obj ect Unl ocked
291 # LEvent; # init at: oldclassic.java: 48
obj ect Wi t
291 # LEvent; # init at: oldclassic.java: 48

If events from the same group still have to be printed in a different way, this can achieved by writing something like this:

public class StatePrinter extends EventPrinter {

public void print(PrintWiter out, Event event) {
if (event.getEvent Type() == eventType. stat eAdvanced) {
out.println(" stateld: "
+ event. get Property(PropertyColl ection. STATE_ID));
super. print(out, event);
} else if (event.getEventType() == eventType. stateRestored) {
out.printin(...);

Trace Report Shell Panel

Reports generated with consol e trace printer andgeneric console trace printer can be viewed in the new Shel | panel (from the
j pf-shel I'), called Trace Report.

e o
B V¥

|/ Properties r Report r Test Qutput r Verify Output r Config View r Logger r Trace Report |

The JPF run completed successfully

honsoletraoem A === - - - e m transition #0 thread: 0
geneﬁcconsomrnﬂpu1#1é;gnv.nasa.jpf.jvm.chnice.ThreadChniceFrnmSet {>main}

[u]»

console output #1 oldclasaic.java:47 : Event new_eventl = new Event():
genericConsole trace #1

oldclassic.main{[Ljava/lang/String;)V
new
dup
inwvokespecial Event.<init>()V
cldclassic.java: 59 : class Ewent |
Event.<init>(}V
aload 0
inwokespecial java.lang.Object.<init>()V
return Jjava.lang.Object.<initc>()V
[1 inan w/oc scurces]
cldclassic.java: &0 : int count = 0;
aload 0
iconat_0
putfield
return Event.<init>()V
cldeclassic.javaz47 : Event new_eventl = new Event()r
oldclassic.main({[Ljava/lang/String;)V
astore_l

oldclassic.java:4d : Event new_event? = new Event():

1

e

Trace printer's results are divided into browseable topics. If no trace printer is defined, consol e trace pri nter is automatically added, and
corresponding report panel is launched. Tousetrace report panel, add following to the . j pf file:

turn on the Shell
shel | =. shel | . basi cshel | . Basi cShel |

This will turn on the default Shel | , and the Trace report panel will be added to the Shell.
How to download.

You can obtain the source code of the jpf-trace-server using Mecurial (hg):

hg clone http://bitbucket.org/igor.andjel kovic/jpf-trace-server

The jpf-trace-server comes with a j pf . properti es file for configuration with JPF. The file should work if you have checked out jpf-trace-server as a
subdirectory of the overall jpf repository, with jpf-core being another subdirectory. For example, JPF resides in project/jpf-core, the extension in
project/jpf-trace-server. Note: you will have to have site.properties.

How to build.

You can either build Java PathFinder from the command line with Ant, or from within Eclipse. To compile the jpf-trace-server project, we recommend
building sources with Apache Ant. As said above, jpf-core needs to reside in project/jpf-core if the extestions is in project/jpf-trace-server. To build with
Ant, switch to the directory where the jpf-trace-server extension is located (where build.xml file is located), and run

ant

which should compile all jpf-trace-server sources.

Installation

http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/site-properties

When you have built the jpf-trace-server project, one jar file is created under directory bui | d:
* jpf-trace-server.jar:The implementation of the trace server.

The jar file should be under directory bui | d if you build the project with Apache Ant.

Running Trace Server.

If you want to run your own program, the easiest way to execute JPF and use trace-server with several options is to create an application property file.
For example, you can create property file like this:

target = [Application]

target_args = [application_args]

classpath = [classpath to your application]
sourcepath = [source path to your application]

i stener=gov. nasa.jpf.traceEm tter.DefaultTraceEnm tter
traceServer.db_|l ocati on = dbTrace

traceServer.|ocal _storer = true
traceServer.trace_storer = inMenory
traceServer.skip_init = true

report. publisher=generi cConsol eTracePri nter

report.genericConsol eTracePrinter.class=gov. nasa.jpf.traceServer. printer. Generi cConsol eTracePrinter
report.genericConsol eTracePrinter. property_viol ati on=out put,trace

traceServer.tracePrinter.instruction.shows=true
traceServer.tracePrinter.instruction.printExtrabData=fal se

traceServer.tracePrinter.object.show=true
traceServer.tracePrinter.thread. show=true

report.consol e.property_violation = error,trace

You should set JPF_CORE to the directory you installed the jpf-core project, as described above. Suppose that you save the above property file as
nmyappl i cation. j pf, the command starting JPF becomes like this:

java -jar ${JPF_CORE}/buil d/ RunJPF.jar nyapplication.j pf

For other arguments to trace-server, see all comments mentioned above.

In order to run a analyzer post mortem (works only if neo4j trace storer was used to save the trace), you should run something like tihs:

JPF_TRACE_SERVER=
JPF_CORE=
NEO_KERNEL=
NEO_GERONI MO=

CLASSPATH=

java -cl asspath gov. nasa. j pf.traceAnal yzer. Deadl ockAnal yzer dbTrace neo4j

This will run the Deadl ockAnal yzer with the database location and trace query name as parameters. The meaning of each variable is described
below:

* JPF_TRACE_SERVER HOME : jpf-trace-server base directory
» JPF_CORE : jpf-core binaries
*+ NEO _KERNEL and NEO_GERON MO: neo4j libraries

Running tests.

Test for the jps-trace-server are located in the bi n/ f ol der . In order to run them, you need to run the shell script t est . sh. This will run all the tests. To
run some of them separately, you will have to copy/paste the output of the script. If you run the t est . sh you will get the output as following:

$./test.sh

./traceServer.sh \

../ src/ exanpl es/ deadl ockAnal yzerEm tter.jpf \

+traceServer.trace_storer=i nMenory \

+traceServer.trace_anal yzer=gov. nasa. j pf. traceAnal yzer. Deadl ockAnal yzer \
+traceServer.trace_anal yzer. parans=essential \

> ../l og/deadl AE-i nMem Deadl A-essen. | og

ok

./traceServer.sh \

../ src/ exanpl es/ deadl ockAnal yzerEm tter.jpf \

+traceServer.trace_storer=i nMenory \

+traceServer.trace_anal yzer=gov. nasa. j pf.traceAnal yzer. Deadl ockAnal yzer \
+traceServer.trace_anal yzer. parans=col um \

> ../l og/deadl AE-i nMem Deadl A-col um | og

ok

The single test is the:

./traceServer.sh \

../ src/exanpl es/ deadl ockAnal yzerEm tter.jpf \

+traceServer.trace_storer=i nMenory \

+traceServer.trace_anal yzer =gov. nasa. j pf.traceAnal yzer. Deadl ockAnal yzer \
+traceServer.trace_anal yzer. parans=essential \

> ../l og/deadl AE-i nMem Deadl A-essen. | og

ok

S0 you can copy that and run the test alone.

#0k means that the test has succeded. Output of the test was written to . . / | og/ deadl AE-i nMem Deadl A- essen. | 0g, so you can look at the
.log file to see what the test was doing. The test passes if the output (.log file) is the same as the corresponfing . out file, in this case
.. /1 o0g/ deadl AE-i nMem Deadl A- essen. out .. out files are located in the | og folder, subdirectory of the jpf-trace-server home.

Test.sh has a mode t est . sh - n, which only lists what it would run, without executing it. That way you would get the list of tests with all the parameters
needed for test to run.

Repository

The sources for this project are available from a Mercurial repository on _http://babelfish.arc.nasa.gov/hg/jpf/jpf-trace-server

Trace Server as part of the JPF Summer Projects

The official JPF Summer Project page: http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/2010-trace-server

Acknowledgments

This project was started as part of_Google Summer of Code (GSoC) 2010. The project was mentored by Cyrille Artho from National Institute of
Advanced Industrial Science and Technology (AIST) Research Center for Information Security (RCIS).

10

http://babelfish.arc.nasa.gov/hg/jpf/jpf-trace-server
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/2010-trace-server
http://socghop.appspot.com/gsoc

	Trace Server user guide
	Contents
	Description
	Trace Emitter
	Trace Filter
	Trace Query
	Trace Analyzer
	Trace Printer
	Console Trace Printer
	Generic Console Trace Printer

	Trace Report Shell Panel
	How to download.
	How to build.
	Installation
	Running Trace Server.
	Running tests.
	Repository
	Trace Server as part of the JPF Summer Projects
	Acknowledgments

