
Wikiprint Book

Title: Trace Server user guide

Subject: Java Path Finder - projects/jpf-trace-server

Version: 9

Date: 03/15/2013 05:18:27 PM

2

Table of Contents

Trace Server user guide 3

Contents 3

Description 3

Trace Emitter 4

Trace Filter 5

Trace Query 5

Trace Analyzer 6

Trace Printer 7

Console Trace Printer 7

Generic Console Trace Printer 8

Trace Report Shell Panel 9

How to download. 10

How to build. 10

Installation 10

Running Trace Server. 11

Running tests. 12

Repository 12

Trace Server as part of the JPF Summer Projects 12

Acknowledgments 12

3

Trace Server user guide

A JPF extension for storing the execution trace, by Igor Andjelkovic and Cyrille Artho.

For any information or to report problems, please contact:

Igor Andjelkovic <igor.andjelkovic "at" gmail.com>

Contents

Description

• Trace Emitter

• Trace Filter

• Trace Query

• Trace Analyzer

Trace Printer

• Console Trace Printer

• Generic Console Trace Printer

• Trace Report Shell Panel

• How to download

• How to build

• Installation

• Running trace server

• Running tests

• Repository

• Trace Server as part of the JPF Summer Projects

• Acknowledgments

Description

During the execution of the SUT (System Under Test), JPF generates trace that consists of executed instructions and is kept in memory, competing with

SUT heap and state storage. Production code SUT, can create trace that contain millions of steps (Instruction objects). The trace cannot be

augmented with custom properties, nor trace output can be changed. In order to store custom trace data, one has to implement

gov.nasa.jpf.Listener, create its own data structure and deal with state backtracking and restoration. Trace analysis is only possible "on-the-fly",

i.e. when JPF is still running.

One possible solution of the problem described above is to configure a trace server interface that can listen on all JPF notifications (events) and

stores them in a database. Once such database is created, post mortem analyzers can be used to find out about defects etc. Listeners like the

DeadlockAnalyzer really should be implemented that way, since there is no need to run them while JPF is still searching for a deadlock. Post mortem

analyzers does not only speed up JPF in the first place, but also avoid having to re-run JPF on a large system under test if you need to try several trace

analyzers. JPF extensions would also benefit from the ability to augment traces with their custom information. The Trace Server framework should

therefore be extensible enough to allow listeners to augment a trace with extra data.

Trace Server consists of several building blocks, shown at the picture below:

http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Description
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceEmitter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceFilter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceQuery
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceAnalyzer
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TracePrinter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#ConsoleTracePrinter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#GenericConsoleTracePrinter
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceReportShellPanel
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Howtodownload.
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Howtobuild.
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Installation
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#RunningTraceServer.
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Runningtests.
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Repository
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#TraceServeraspartoftheJPFSummerProjects
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-trace-server#Acknowledgments
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/listener

4

Trace Emitter

The entry point of the system is the Trace Emitter. It is responsible for system initialization and starting, and is an interface between JPF and the rest of

the system.

The system can be configured by providing the following parameters to the used .jpf configuration file, e.g runTraceServer.jpf:

trace emitter class, must be provided in order to store the trace

listener=gov.nasa.jpf.traceEmitter.DefaultTraceEmitter

database location (folder), it will be created if it doesn't already exist.

not used when trace_storer is not persistent, like "inMemory"

it can be omitted, default value is "db", so database will be created in the current folder

traceServer.db_location = dbTrace

use local(true) or remote(false) trace server

default value is "true"

traceServer.local_storer = true

trace storer type, "inMemory" or "neo4j"

default value is "neo4j"

traceServer.trace_storer = inMemory

can be used to start recording when SUT main() method is called

initial instructions will be skipped

default value is "true"

traceServer.skip_init = true

remote server's name, not used when trace storer is local

default value is "localhost"

traceServer.host = localhost

remote server's port number, not used when trace storer is local

default value is "4444"

traceServer.port = 4444

Trace emitter is responsible for creating event based on notifications from JPF listener. The base trace emitter stores only events that are

necessary for creating the trace structure. In order to add more events to the trace, one has to extend the

gov.nasa.jpf.traceEmitter.TraceEmitter and override the appropriate methods inherited from JPF listener interface. For example,

ObjInsnEmitter allows instructionExecute and objectLocked events to be stored:

public class ObjInsnEmitter extends TraceEmitter {

 public ObjInsnEmitter(Config config, JPF jpf) {

 super(config, jpf);

 }

 public void instructionExecuted(JVM vm) {

 Instruction insn = vm.getLastInstruction();

 // we are skipping init instructions

 // recording starts when main() is called

 MethodInfo mi = insn.getMethodInfo();

 if (skipInit) {

 if (mi == miMain) {

 skipInit = false; // start recording

 } else {

 return; // skip

 }

 }

 Event event = this.createInstructionEvent(insn, mi,

 eventType.instructionExecuted);

5

 event.addProperty(PropertyCollection.INSTRUCTION_SOURCE_LINE,

 getLineString(insn));

 // redefine the default value for property INSTRUCTION_OPCODE

 // PropertyCollection represents predefined collection of PropertyID objects

 event.addProperty(PropertyCollection.INSTRUCTION_OPCODE, insn.toString());

 traceFilter.processEvent(event, eventType.instructionExecuted);

 }

 public void objectLocked(JVM vm) {

 Event event = this.createObjectEvent(vm, eventType.objectLocked);

 event.addProperty(PropertyCollection.THREAD_ID, vm.getLastThreadInfo().getIndex());

 traceFilter.processEvent(event, type);

 }

Base trace emitter provides createEvent methods for creating events that have to be initialized with default set of properties. A property is added to

event by calling event.addProperty() and providing property id (represented with the PropertyID class) and property value (Java primitive or

String types are allowed). To use ObjInsnEmitter, replace listener=gov.nasa.jpf.traceEmitter.DefaultTraceEmitter with

listener=gov.nasa.jpf.traceEmitter.DefaultTraceEmitter in the above defined .jpf file, since only one trace emitter is allowed. (You can

have as many other listeners as you want.)

Trace Filter

As seen above, trace emitter uses trace filter to process each event. A filter is capable of forwarding events in the same way they are received.

It can then act as an emitter to another trace filter, or a trace storer, allowing pipelining multiple trace storers. TraceFilter is implemented as a Chain

of Responsibility design pattern. If the filter wants to filter out events, it does so by not forwarding data down the chain. Thus, the chain will break, and

event will be discarded. For example, to write InstructionFilter that filters all instructions except for NEW ones, one needs to extends

TraceFilter and override processInstructionExecuted (to filter any other event type, just override corresponding process method):

public class ConsolePrintFilter extends TraceFilter {

 public void processInstructionExecuted(Event event) {

 String insnOpcode = (String) event.getProperty(PropertyCollection.INSTRUCTION_OPCODE);

 if (insnOpcode.equals("new") {

 forward(event, eventType.instructionExecuted);

 }

 }

}

To register InstructionFilter add this snippet to the .jpf defined above:

add trace filter classes (full name required)

traceServer.trace_filter=gov.nasa.jpf.example.InstructionFilter

Since trace emitter communicates only with the trace filter, the trace filter is responsible for forwarding events to the trace storer. This is done

automatically by the system. In order to use more than one trace storer, one needs to add traceServer.additional_trace_storers property,

and the system will handle that automatically (by using GeneralTailTraceFilter):

add more trace storers (different than the traceServer.trace_storer value)

traceServer.additional_trace_storers=neo4j

Trace Query

We have the database, so we need the query mechanism to pull the interesting data from it. TraceQuery provides database independent query API,

for querying, among others, the last path, all the paths that ended and for querying the entire event space. To do that, one would have to provide a

TracePredicate, which will be called upon to decide whether currently processed event from the trace should be included in the result. For example,

to query for objectLocked and objectUnlocked events only, one should write:

TracePredicate predicate = new TracePredicate() {

 public boolean filter(Event currentEvent) {

 EventTypes.eventType eType = currentEvent.getEventType();

6

 switch (eType) {

 case objectLocked:

 case objectUnlocked: {

 return true;

 }

 }

 return false;

 }

};

// don't invert the events in the result

boolean reversePath = false;

EventIterator path = query.getLastPath(predicate, reversePath);

for (Event event : path) {

 ...

}

Trace Analyzer

The whole system is designed for trace data analysis. The trace analyzer should query the database, do some analysis and report the results. Currently,

each analyzer can define its own reporting mechanism, or can use trace printer.

public class ExampleAnalyzer extends TraceAnalyzer {

 private void analyzeAll() { ... }

 private void analyzeThreads() { ... }

 private void analyzeMethods() { ... }

 // analyze only the "NEW" instructions,

 // and print the result if some condition is satisfied

 private void analyzeInstructions() {

 TracePredicate predicate = new TracePredicate() {

 public boolean filter(Event currentEvent) {

 return currentEvent.getEventType() == EventTypes.eventType.instructionExecuted;

 }

 };

 // don't invert the events in the result

 boolean reversePath = false;

 EventIterator path = query.getLastPath(predicate, reversePath);

 for (Event event : path) {

 String opcode = (String) event.getPropety(PropertyCollection.INSTRUCTION_OPCODE);

 if (opcode.equals("new") && ...) {

 System.out.println(event.getPropety(...));

 ...

 }

 }

 }

 // start the analysis

 // what would be analyzed depends on how the analyzer was configured

 public void analyze() {

 query.startTraceQuery();

 if (format.equals(INSTRUCTIONS)) {

 analyzeInstructions();

 } else if (format.equals(METHODS)) {

 analyzeMethods();

 } else if (format.equals(THREADS)) {

 analyzeThreads();

 } else {

7

 analyzeAll();

 }

 query.stopTraceQuery();

 }

 // configure the analyzer with some parameters

 // for this analyzer, we have the type of analysis that is going to be performed

 public void configureAnalyzer(Object... args) {

 if (args.length > 0) {

 format = (String) args[0];

 } else {

 format = ALL;

 }

 }

}

Trace analysis may be performed during the execution (on-the-fly) or post-mortem, after the program has terminated. To use it on-the-fly, one needs to

add:

trace query that analyzers will be use to query the database

"inMemory" are "neo4j" are the possible choices, default is "inMemory"

traceServer.trace_query=inMemory

add trace analyzers (full name required)

traceServer.trace_analyzer=gov.nasa.jpf.example.ExampleAnalyzer

provides parameters for the analyzers

traceServer.trace_analyzer.params=instructions

Trace Printer

We have the execution trace, we know how to query it for various information, we can analyze the data, the only thing we left is the printing.

Console Trace Printer

ConsoleTracePrinter prints the new trace in old JPF's printer fashion. The main difference is that the new printer can print custom data added to the

trace, by defining PropertyCollection.TRACE_EXTRA_DATA property for each event that one would like to augment with extra data. The extra data

will be printed right after the default event's data is printed. Console printer configuration parameters are:

register console trace printer as a publisher

report.publisher=consoleTracePrinter

report.consoleTracePrinter.class=gov.nasa.jpf.traceServer.printer.ConsoleTracePrinter

print trace when property is violated

report.consoleTracePrinter.property_violation=output,trace

Show the steps from inside the transition. Default is true.

report.consoleTracePrinter.show_steps=true

Show the source code for executed instruction (line + location).

Default is true.

report.consoleTracePrinter.showSource=true

Show the instruction location from the source file. Used only if

showLocation is set to true. Default is true.

report.consoleTracePrinter.showLocation=true

Show the method name and the instruction opcode.

Default is false.

report.consoleTracePrinter.showCode=true

Show the method name. Used only if {@link #showLocation} is set to true.

8

Default is false.

report.consoleTracePrinter.showMethod=true

Show the choice generator information for transitions.

Default is true.

report.consoleTracePrinter.showCG=true

Show the extra data added to trace by using

PropertyCollection.TRACE_EXTRA_DATA property. Default is true.

report.consoleTracePrinter.showExtraData=true

If you run the trace server with the new console printer, and above parameters, output snippet might look like this:

...

-- transition #5 thread: 2

gov.nasa.jpf.jvm.choice.ThreadChoiceFromSet {Thread-0,>Thread-1}

 oldclassic.java:123 : count = event2.count; // <race> violates event2 monitor encapsulation

 SecondTask.run()V

 getfield

 putfield

 oldclassic.java:126 : System.out.println(" 2");

 getstatic

 ldc

 invokevirtual java.io.PrintStream.println(Ljava/lang/String;)V

 oldclassic.java:127 : event1.signal_event(); // updates event1.count

 aload_0

 getfield

 invokevirtual Event.signal_event()V

 ...

If trace emitter is used that will add System.out.println() arguments to the trace by using the PropertyCollection.TRACE_EXTRA_DATA

property, the same path that shown above would look like this:

...

-- transition #5 thread: 2

gov.nasa.jpf.jvm.choice.ThreadChoiceFromSet {Thread-0,>Thread-1}

 oldclassic.java:123 : count = event2.count; // <race> violates event2 monitor encapsulation

 SecondTask.run()V

 getfield

 putfield

 oldclassic.java:126 : System.out.println(" 2");

 getstatic

 ldc

 invokevirtual java.io.PrintStream.println(Ljava/lang/String;)V

 " 2"

 oldclassic.java:127 : event1.signal_event(); // updates event1.count

 aload_0

 getfield

 invokevirtual Event.signal_event()V

 ...

The System.out.println() argument (in this case " 2") is printed right after the invokevirtual instruction.

Generic Console Trace Printer

Provides a more powerful printing mechanism. It extends ConsoleTracePrinter, but it uses TracePrinter to print the trace.

TracePrinter provides different printer for every group of events (see

gov.nasa.jpf.traceServer.traceStorer.EventTypes.eventGroupType for more details). To configure trace printer, add following

9

parameters:

register genericConsoleTracePrinter as a publisher

report.publisher=genericConsoleTracePrinter

report.genericConsoleTracePrinter.class=gov.nasa.jpf.traceServer.printer.GenericConsoleTracePrinter

report.genericConsoleTracePrinter.property_violation=output,trace

print instruction events

traceServer.tracePrinter.instruction.show=true

don't add extra data to the output

default value is true for all event types

traceServer.tracePrinter.instruction.printExtraData=false

print object events

traceServer.tracePrinter.object.show=true

print thread events

traceServer.tracePrinter.thread.show=true

To print event group, one must set traceServer.tracePrinter.eventType.show to true, where eventType is type from eventGroupType.

Each event printer can be replaced by extending the EventPrinter, base printer class. The new printer have to be registered in order to be used within

trace printer,by setting the traceServer.tracePrinter.eventType.class parameter, where eventType is type from eventGroupType:

traceServer.tracePrinter.object.class=gov.nasa.jpf.traceServer.extensions.NewObjectPrinter

Output example from the NewObjectPrinter that prints location of object's initialization (trace printer is configured to print instruction events as well):

...

instructionExecuted

 oldclassic.java:130

 SecondTask.run()V

 invokevirtual Event.wait_for_event()V

objectLocked

 291 # LEvent; # init at: oldclassic.java:48

instructionExecuted

 oldclassic.java:79

 Event.wait_for_event()V

 aload_0

objectUnlocked

 291 # LEvent; # init at: oldclassic.java:48

objectWait

 291 # LEvent; # init at: oldclassic.java:48

...

If events from the same group still have to be printed in a different way, this can achieved by writing something like this:

public class StatePrinter extends EventPrinter {

...

 public void print(PrintWriter out, Event event) {

 if (event.getEventType() == eventType.stateAdvanced) {

 out.println("===================== stateId: "

 + event.getProperty(PropertyCollection.STATE_ID));

 super.print(out, event);

 } else if (event.getEventType() == eventType.stateRestored) {

 out.println(...);

 }

 }

}

Trace Report Shell Panel

10

Reports generated with console trace printer and generic console trace printer can be viewed in the new Shell panel (from the

jpf-shell), called Trace Report.

Trace printer's results are divided into browseable topics. If no trace printer is defined, console trace printer is automatically added, and

corresponding report panel is launched. To use trace report panel, add following to the .jpf file:

turn on the Shell

shell=.shell.basicshell.BasicShell

This will turn on the default Shell, and the Trace report panel will be added to the Shell.

How to download.

You can obtain the source code of the jpf-trace-server using Mecurial (hg):

hg clone http://bitbucket.org/igor.andjelkovic/jpf-trace-server

The jpf-trace-server comes with a jpf.properties file for configuration with JPF. The file should work if you have checked out jpf-trace-server as a

subdirectory of the overall jpf repository, with jpf-core being another subdirectory. For example, JPF resides in project/jpf-core, the extension in

project/jpf-trace-server. Note: you will have to have site.properties.

How to build.

You can either build Java PathFinder from the command line with Ant, or from within Eclipse. To compile the jpf-trace-server project, we recommend

building sources with Apache Ant. As said above, jpf-core needs to reside in project/jpf-core if the extestions is in project/jpf-trace-server. To build with

Ant, switch to the directory where the jpf-trace-server extension is located (where build.xml file is located), and run

ant

which should compile all jpf-trace-server sources.

Installation

http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/site-properties

11

When you have built the jpf-trace-server project, one jar file is created under directory build:

• jpf-trace-server.jar: The implementation of the trace server.

The jar file should be under directory build if you build the project with Apache Ant.

Running Trace Server.

If you want to run your own program, the easiest way to execute JPF and use trace-server with several options is to create an application property file.

For example, you can create property file like this:

target = [Application]

target_args = [application_args]

classpath = [classpath to your application]

sourcepath = [source path to your application]

listener=gov.nasa.jpf.traceEmitter.DefaultTraceEmitter

traceServer.db_location = dbTrace

traceServer.local_storer = true

traceServer.trace_storer = inMemory

traceServer.skip_init = true

report.publisher=genericConsoleTracePrinter

report.genericConsoleTracePrinter.class=gov.nasa.jpf.traceServer.printer.GenericConsoleTracePrinter

report.genericConsoleTracePrinter.property_violation=output,trace

traceServer.tracePrinter.instruction.show=true

traceServer.tracePrinter.instruction.printExtraData=false

traceServer.tracePrinter.object.show=true

traceServer.tracePrinter.thread.show=true

report.console.property_violation = error,trace

...

You should set JPF_CORE to the directory you installed the jpf-core project, as described above. Suppose that you save the above property file as

myapplication.jpf, the command starting JPF becomes like this:

java -jar ${JPF_CORE}/build/RunJPF.jar myapplication.jpf

For other arguments to trace-server, see all comments mentioned above.

In order to run a analyzer post mortem (works only if neo4j trace storer was used to save the trace), you should run something like tihs:

JPF_TRACE_SERVER=".."

JPF_CORE="../../jpf-core/build/jpf.jar"

NEO_KERNEL="${JPF_TRACE_SERVER}/lib/neo4j-kernel-1.0.jar"

NEO_GERONIMO="${JPF_TRACE_SERVER}/lib/geronimo-jta_1.1_spec-1.1.1.jar"

CLASSPATH="${JPF_TRACE_SERVER}/build/main:${NEO_KERNEL}:${NEO_GERONIMO}:${JPF_CORE}"

java -classpath "${CLASSPATH}" gov.nasa.jpf.traceAnalyzer.DeadlockAnalyzer dbTrace neo4j

This will run the DeadlockAnalyzer with the database location and trace query name as parameters. The meaning of each variable is described

below:

• JPF_TRACE_SERVER_HOME : jpf-trace-server base directory

• JPF_CORE : jpf-core binaries

• NEO_KERNEL and NEO_GERONIMO : neo4j libraries

12

Running tests.

Test for the jps-trace-server are located in the bin/folder. In order to run them, you need to run the shell script test.sh. This will run all the tests. To

run some of them separately, you will have to copy/paste the output of the script. If you run the test.sh you will get the output as following:

$./test.sh

./traceServer.sh \

../src/examples/deadlockAnalyzerEmitter.jpf \

+traceServer.trace_storer=inMemory \

+traceServer.trace_analyzer=gov.nasa.jpf.traceAnalyzer.DeadlockAnalyzer \

+traceServer.trace_analyzer.params=essential \

> ../log/deadlAE-inMem-DeadlA-essen.log

ok

./traceServer.sh \

../src/examples/deadlockAnalyzerEmitter.jpf \

+traceServer.trace_storer=inMemory \

+traceServer.trace_analyzer=gov.nasa.jpf.traceAnalyzer.DeadlockAnalyzer \

+traceServer.trace_analyzer.params=column \

> ../log/deadlAE-inMem-DeadlA-colum.log

ok

...

The single test is the:

./traceServer.sh \

../src/examples/deadlockAnalyzerEmitter.jpf \

+traceServer.trace_storer=inMemory \

+traceServer.trace_analyzer=gov.nasa.jpf.traceAnalyzer.DeadlockAnalyzer \

+traceServer.trace_analyzer.params=essential \

> ../log/deadlAE-inMem-DeadlA-essen.log

ok

so you can copy that and run the test alone.

#ok means that the test has succeded. Output of the test was written to ../log/deadlAE-inMem-DeadlA-essen.log, so you can look at the

.log file to see what the test was doing. The test passes if the output (.log file) is the same as the corresponfing .out file, in this case

../log/deadlAE-inMem-DeadlA-essen.out. .out files are located in the log folder, subdirectory of the jpf-trace-server home.

Test.sh has a mode test.sh -n, which only lists what it would run, without executing it. That way you would get the list of tests with all the parameters

needed for test to run.

Repository

The sources for this project are available from a Mercurial repository on http://babelfish.arc.nasa.gov/hg/jpf/jpf-trace-server

Trace Server as part of the JPF Summer Projects

The official JPF Summer Project page: http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/2010-trace-server

Acknowledgments

This work was started as part of the Google Summer of Code (GSoC), during the summer 2010. The project was mentored by Cyrille Artho from the

National Institute of Advanced Industrial Science and Technology (AIST) Research Center for Information Security (RCIS).

http://babelfish.arc.nasa.gov/hg/jpf/jpf-trace-server
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/2010-trace-server
http://socghop.appspot.com

	Trace Server user guide
	Contents
	Description
	Trace Emitter
	Trace Filter
	Trace Query
	Trace Analyzer
	Trace Printer
	Console Trace Printer
	Generic Console Trace Printer

	Trace Report Shell Panel
	How to download.
	How to build.
	Installation
	Running Trace Server.
	Running tests.
	Repository
	Trace Server as part of the JPF Summer Projects
	Acknowledgments

