
1

TracNav

• JPFWiki - Welcome Page

Introduction...

Installing JPF...

User Guide

• Application Types

• JPF Components

• Configuring JPF

• Running JPF

• JPF Output

• The JPF API

Developer Guide...

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

The Verify API

Although the primary purpose of JPF is to verify applications that are not JPF dependent, it can also be used to check programs that are explicitly written

to execute under JPF. There are two ways to do this

• use of jpf annotations like @gov.nasa.jpf.annotation.JPFConfig and @gov.nasa.jpf.annotation.FilterField

• use of the various gov.nasa.jpf.jvm.Verify APIs

The first method provides only directives to JPF (by means of Java annotations), and does not modify or add any specific code to your SUT. The second

one is imperative and should only be used by JPF specific test drivers.

JPF Annotations

The jpf-core currently supports two annotation types: @JPFConfig and @FilterField

import gov.nasa.jpf.annotation.JPFConfig

...

@JPFConfig({"listener+=,gov.nasa.jpf.aprop.listener.SharedChecker", ..})

public class MyClass {

 ..

}

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/application_types
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/components
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/config
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/run
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/output
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/api
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC

2

The @JPFConfig annotation allows to set JPF properties (<key>=<value> pairs) for classes and methods of your application, which is esp. useful to add

specific listeners. You have to be aware of the property effects though, since not all behavior can be changed at runtime, and you usually cannot reverse

features with this method

The @FilterField annotation is used to mark certain fields in your application as not relevant for state matching. This comes in handy if you have to add

debugging information like counters that would otherwise open the state space (i.e. would prevent matching).

import gov.nasa.jpf.annotation.FilterField;

...

public class MyClass {

 ..

 @FilterField int counter;

 ..

}

This does not change execution of your program in any way, and also does not affect backtracking within JPF (i.e. values are properly restored). It only

tells JPF to ignore marked fields when hashing program states.

There is a whole projects/jpf-aprop? JPF project that is dedicated to Java annotation based program properties like @Nonnull, @NonShared,

@Immutable, @Requires and many others. Please refer to its wiki:projects page for details.

The Verify API

Sometimes it is useful to create JPF specific test drivers, like you create JUnit test cases. In this code, you can make explicit use of JPF APIs, since it is

not supposed to run outside JPF. There are several categories of APIs which are encapsulated in the gov.nasa.jpf.jvm.Verify class.

Data ChoiceGenerators (CG)

Data CGs are suitable for writing test drivers that are model checker aware. The idea is to obtain non-deterministic input values from JPF in a way that it

can systematically analyze all relevant choices. In its most simple form, this can be used like

// test driver code

import gov.nasa.jpf.jvm.Verify;

..

boolean cond = Verify.getBoolean();

// following code is executed for both cond=true AND cond=false

..

The Verify class contains methods for creating a number of different choice generators for builtin Java types, like

..

int i = Verify.getInt(min,max); // evaluates for all values between 'min' and 'max' (inclusive)

..

double d = Verify.getDoubleFromSet(-42.0, 0.0, 42.0 ..); // evaluates all given values

..

CGs don't stop at value sets that can be completely enumerated based on their type (like boolean, and - at least theoretically - integers). JPF also

supports configured heuristics based choice generators, where the values sets are application dependent and can be specified in property files.

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects

3

Figure: Data ChoiceGenerators

Choice generator implementation is described in a separate section of this documentation.

Search Pruning

Explicitly restricting the search is useful for highly application specific properties, where it is obvious that certain values are not of interest with respect to

the property.

// ..compute some data..

Verify.ignoreIf(data > someValue); // prune search if true

// ..do some stuff with data..

If the provided expression evaluates to true, JPF does not continue to execute the current path, and backtracks to the previous non-deterministic choice

point.

State Annotation

Based on certain value combinations, an application might give JPF hints about the relevance of a program state that can be subsequently used by

Search and/or Heuristic implementations.

// ..compute some data

Verify.interesting(data < someValue);

// ..do some stuff with data

This does not stop execution by JPF, but stores an 'interesting' attribute for the current state. Its more general version is used to attach arbitrary strings to

states:

// ..compute some data

if (data < someValue) {

 Verify.setAnnotation("critical data value");

 // ..do some stuff with dat

Again, this category is about to become less important since Search- and VMListeners are superior mechanisms to store not just strings, but arbitrary

objects as state annotations.

Verification Output

This is the most simple category, which is used to differentiate between normal program output (that is executed and analyzed by JPF), and output that is

strictly verification relevant, i.e. should not appear when executing a program outside JPF. Not very surprising, it contains a number of print(..) methods.

Atomicity Control

this category can be used to control the number of thread interleavings JPF has to analyze. While this is problematic in terms of missing potential

defects, it is was often the only way to constrain the state space so that JPF could verify a given application.

Verify.beginAtomic();

...

// all code in here is executed by JPF in one transition

...

Verify.endAtomic();

Direct atomicity control was mainly used before the automatic, on-the-fly partial order reduction (POR) was implemented, and only remains relevant for

applications that are (still) problematic with respect to POR. This especially includes frequent access to reachable, but not visible fields in concurrent

programs (i.e. there is a reference chain that makes the object reachable from different threads, but the corresponding fields are private or protected,

hence not visible for all threads).

JPF's on-the-fly POR implementation is described in a separate section of this documentation.

Other Usages

http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/choicegenerator
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/partial_order_reduction

4

Some Verify methods support collecting information during JPF execution, which is persistent and can be later-on queried by JPF embedding code

(programs that execute JPF). This uses an MJI trick where the native peer class (JPF_gov_nasa_jpf_jvm_Verify) is used to set some data during

JPF execution, which can be later-on retrieved by model class (gov.nasa.jpf.jvm.Verify) code that is executed outside of JPF. This is currently

used to implement counters, which in turn are used to verify JPF itself.

It should be noted that while most of the Verify APIs have alternative implementations that enable execution outside of JPF, applications using them at

least don't build outside the JPF environment. Their use therefore is only recommended for JPF specific test drivers.

	TracNav
	TracNav
	Introduction...
	Introduction...
	Installing JPF...
	User Guide
	Developer Guide...
	Projects...
	About...

	The Verify API
	JPF Annotations
	The Verify API
	Data ChoiceGenerators (CG)
	Data ChoiceGenerators (CG)
	Search Pruning
	State Annotation
	Verification Output
	Atomicity Control
	Other Usages

