
1

TracNav

• JPFWiki - Welcome Page

Introduction...

Installing JPF...

User Guide

• Application Types

• JPF Components

• Configuring JPF

• Running JPF

• JPF Output

• The JPF API

Developer Guide...

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

Configuring JPF

Let's face it - JPF configuration can be intimidating. It is worth to think about why we need such a heavy mechanism before we dive into its details. Little

in JPF is hardwired. Since JPF is such an open system that can be parameterized and extended in a variety of ways, there is a strong need for a general,

uniform configuration mechanism. The challenge for this mechanism is that many of the parts which are subject to parameterization are configured

themselves (i.e. options for optional JPF components like listeners). This effectively prohibits the use of a configuration object that contains concrete

fields to hold configuration data, since this class would be a central "design bottleneck" for a potentially open number of JPF components like Searches,

Instruction sets and Listeners.

The goal is to have a configuration object that

• is based on string values

• can be extended at will

• is passed down in a hierarchical initialization process so that every component extracts only its own parameters

We achieve this by means of a central dictionary object (gov.nasa.jpf.Config) which is initialized through a hierarchical set of Java property files

that target three different initialization layers:

1. site: optionally installed JPF components

2. project: settings for each installed JPF component

3. application: the class and program properties JPF should check (this is part of your system under test)

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/application_types
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/components
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/config
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/run
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/output
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/api
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC


2

Initialization happens in a prioritized order, which means you can override anything from later configuration stages, all the way up to command line

parameters (actually, this can be even overridden by using the explicit Verify API at runtime, but this is a developer topic). Here is the blueprint, which we

will examine in order of execution:

Property Types

Default Properties

This is the first step, which gives JPF a working set of default values for its basic components. Since this is highly dependent on the jpf-core version in

use, we actually pull this from jpf.jar - which contains all classes that constitute the JPF core. The corresponding default.properties file is

looked up as a resource via the most basic gov.nasa.jpf.JPF class. You don't need to specify anything, just make sure you have jpf.jar in the

classpath. Actually, you don't even need this if you start JPF via the included bin/jpf script, or explicitly through "java -jar RunJPF.jar", which

looks up the location of your jpf.jar from your site.properties file. You should not modify the default.properties file unless you are a jpf-core

developer

Site Properties

The site.properties file is machine specific and not part of any JPF component, which means you have to create a site.properties file as part of the

install process. It contains two types of information:

1. the location of the jpf-core

2. installed JPF extensions

Each extension is listed as a name/directory pair, and then added to the comma separated list of extensions. The order in which you define extensions

does matter, since it will determine the order in which each of these components is initialized, which basically maps to an ordered list of classpath entries

(both for the host VM and JPF itself - paths are kept separate).

http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/site-properties


3

The file should be stored in "${user.home}/.jpf/site.properties", with "${user.home}" being the value of the standard Java system property "user.home"

(which defaults to ~/ on Unix systems)

Project Properties

Each JPF component contains a jpf.properties file in its root directory, no matter if this is the jpf-core or an extension. This file defines the three

paths that need to be set for the component to work properly

1. native_classpath: the host VM classpath (i.e. the classes that constitute JPF itself)

2. classpath: the classpath JPF uses to execute the system under test

3. sourcepath: the path entries JPF uses to locate sources in case it needs to create program traces

A jpf.properties file should be stored in the root directory of a JPF component project.

jpf.properties are executed in order of definition within site.properties, with one caveat: if you start JPF from within a directory tree that

contains a jpf.properties file, this one will always take precedence, i.e. will be loaded last. This way, we ensure that JPF developers can enforce

priority of the component they are working on.

Both site.properties and jpf.properties can define other key/value pairs, but keep in mind that you might end up with different system behavior depending

on where you started JPF - avoid configuration force fights by keeping jpf.properties settings disjunct.

Please note that site and project properties have to be consistent, i.e. the component names (e.g. "jpf-awt") in site.properties and

jpf.propertes need to be the same. This is also true for the build.xml Ant project names.

Application Properties

In order to run JPF, you need to tell it what main class it should start to execute. This is the minimal purpose of the *.jpf application properties files,

which are part of your test projects. Besides the target setting that defines the main class of your system under test, you can also define a list of

target_args and any number of JPF properties that define how you want your application to be checked (listeners, search policy, bytecode factories

etc.)

Command Line Properties

Last not least, you can override or extend any of the previous settings by providing "+<key>=<value>" pairs as command line options. This is convenient

for experiments if you have to determine the right settings values empirically

Special Property Syntax

JPF supports a number of special notations that are valid Java properties syntax, but are only processed by JPF (and - to a certain extend - by Ant):

key=...${x}..: replaces ${x} with whatever is currently stored under the key "x". This also works recursively as in "classpath = mypath;${classpath}". While

normal value expansion is also supported by Ant, it complains about recursive expansion, which means you have to use one of the two following

extensions for accumulated values. In addition, JPF also supports expansion in the key part (i.e. left of the "=")

key+=val"' appends val to whatever is currently stored under key. Note that there can be no blank between key and "+=", which would not be

parsed by Java. This expansion only works in JPF

+key=val'" in a properties file adds val in front of what is currently stored under "key". Note that if you want to use this from the command

line, you have to use two "++", since command line options are started with "+"

Omitting the "=.." part in command line settings defaults to a "true" value for the corresponding key

${config_path} is automatically set to the directory pathname of the currently parsed property file. This can be useful to specify relative pathnames (e.g.

input scripts for the jpf-awt extension)

${config} is set to the file pathname of the currently parsed file

@requires=<key> can be used to short-circuit loading of a properties file. This is a simple mechanism to prevent loading of a jpf.properties file if it needs

to override settings of another component. Note this doesn't throw an exception if the required key is not found, it just bails out of loading the properties

file that contains the @requires

@include=<properties-file> recursively loads the referenced <properties-file>. This is useful for JPF extension specific properties (like 

vm.insn_factory.class) that cannot be put into the jpf.properties of the extension because it would break other projects. Put such settings into



4

separate property files within the extension root dir, and reference the path either with ${config_path}/.. or ${project}/..

Details on various options

• Randomization

• Error Reporting?

http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/config/random

	TracNav
	TracNav
	Introduction...
	Introduction...
	Installing JPF...
	User Guide
	Developer Guide...
	Projects...
	About...



	Configuring JPF
	Property Types
	Default Properties
	Site Properties
	Project Properties
	Application Properties
	Command Line Properties

	Special Property Syntax
	Details on various options


