
1

Understanding JPF Output

TracNav

• JPFWiki - Welcome Page

Introduction...

Installing JPF...

User Guide

• Application Types

• JPF Components

• Configuring JPF

• Running JPF

• JPF Output

• The JPF API

Developer Guide...

Projects...

• Summer Projects

• External Projects

• Change(B)log

About...

• Events

• Presentations

• Papers

• FAQ

• History?

• Support

• People?

• Playground

• Table of Context

There are three different ways a JPF run can produce output, each of them with a different purpose, but all controlled by the [[user:config|general JPF

configuration mechanism]]:

1. application output - what is the application doing?

2. JPF logging - what is JPF doing?

3. JPF reporting system - what is the result of the JPF run?

Application Output

This is the most simple form of output, which usually just consists of System.out.println(...) calls embedded in the application code. There is only one

caveat - since this is executed by JPF as part of the application, the same print statement might be executed several times:

public class MyApplication ..{

   ...

   boolean cond = Verify.getBoolean();

   System.out.println("and the cond is: " + cond);

   ...

}

will produce

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav
http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/application_types
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/components
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/config
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/run
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/output
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/api
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/external-projects/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/changes
http://babelfish.arc.nasa.gov/trac/jpf/wiki/about/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/presentations/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/papers/start
http://babelfish.arc.nasa.gov/trac/jpf/wiki/FAQ
http://babelfish.arc.nasa.gov/trac/jpf/wiki/support
http://babelfish.arc.nasa.gov/trac/jpf/wiki/playground/playground
http://babelfish.arc.nasa.gov/trac/jpf/wiki/TOC


2

...

and the cond is: true

...

and the cond is: false

...

The second execution of the print statement is of course preceeded by a backtrack operation of JPF (the Verify.getBoolean() statement has two choices

{true,false}), but the backtracking might not be visible, e.g. when running without the ExecTracker or ChoiceTracker listeners.

Since it can be sometimes confusing to see the same output twice without knowing if there is an iteration in the application, or JPF did backtrack between

executions, there are two configuration options to control the output behavior:

vm.tree_output ={true|false} - means output is shown on the console each time a print statement is executed. This corresponds to the above example,

and is the default behavior.

vm.path_output ={true|false} - will not immediately print the output on the console, but store in the path for subsequent processing once JPF terminates

(if the output topic is specified - see below). This should produce the same output as running the test application on a normal JVM.

Logging

This is a more interesting form of JPF output, primarily intended to show what JPF does internally. For this purpose, it has to support various levels of

details, ranging from severe errors to fine grained logging of JPF operations.

JPF's logging mechanism does not reinvent the wheel, it piggybacks on the standard java.util.logging infrastructure. While this means it would be

possible to use customized LogHandlers and Formatters (e.g. to log in XML format), there are specialized JPF incarnations of these classes, mainly to

enable logging configuration via the standard JPF configuration mechanism rather than system properties.

Using the JPF Logging involves two aspects: (1) controlling log output destination, and (2) setting log levels. Both are done with JPF property files.

To set the default log level, use the log.level property (the supported levels being severe,warning,info,fine,finer,finest)

If you want to log to a different console that possibly even runs on a remote machine, use the gov.nasa.jpf.tools.LogConsole on the machine that should

display the log messages:

$ java gov.nasa.jpf.tools.LogConsole <port>

Then start JPF on the test machine, specifying where the log output should go:

$ jpf +log.output=<host>:<port> ... MyTestApp

The default host is "localhost", default port is 20000. If these are suitable settings, you can start the LogConsole without parameters, and just specify

+log.output=socket when running JPF.

If you develop your own JPF classes, please also check the [[devel:logging|JPF logging API]] page.

Reports

The JPF reporting system is used to show the outcome of a JPF run, to report property violations, print traces, show statistics and much more. This is in

a way the most important part of the JPF user interface, and might involve various different output formats (text, XML, API calls) and targets (console,

IDE). Depending on application and project, users might also need control over what items are displayed in which order. It is also obvious this needs to

be an extensible mechanism, to adapt to new tools and properties. The JPF report system provides all this, again controlled by JPF's general

configuration mechanism.

The basic concept is that reporting depends on a predefined set of output phases, each of them with a configured, ordered list of topics. The output

phases supported by the current system are:

• start - processed when JPF starts

• transition - processed after each transition

• property_violation - processed when JPF finds a property violation

• finished - processed when JPF terminates



3

There is no standard transition topic yet (but it could be implemented in PublisherExtensions). The standard property_violation topics include:

• error - shows the type and details of the property violation found

• trace - shows the program trace leading to this property violation

• snapshot - lists each threads status at the time of the violation

• output - shows the program output for the trace (see above)

• statstics - shows property statistics information

Last not least, the finished list of topics that usually summarizes the JPF run:

• result - reports if property violations were found, and shows a short list of them

• statstics - shows overall statistics information

The system consists of three major components: (1) the Reporter, (2) any number of format specific Publisher objects, and (3) any number of tool-,

property- and Publisher-specific PublisherExtension objects. Here is the blueprint:

Again, there is separate report system API documentation if you are interested in JPF development.

http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/report

	Understanding JPF Output
	TracNav
	Introduction...
	Introduction...
	Installing JPF...
	User Guide
	Developer Guide...
	Projects...
	About...


	Application Output
	Logging
	Reports


